Skip to main content

Identifying Metric Types with Optimized DFT and Autocorrelation Models

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13267))

Included in the following conference series:

  • 664 Accesses

Abstract

This paper explores the classification of metric types using different feature representations. Using weighted timepoint, DFT, and autocorrelation, we train feedforward neural networks to distinguish allemandes, courantes, sarabandes, and gavottes in the Yale-Classical Archives Corpus. Autocorrelation and DFT models perform better than a baseline, with DFT consistently better by a small amount.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(k > N/2\), \(F_k(X)\) and \(F_{N-k}(X)\) have equal magnitude and opposite phase for a real-valued signal, X, by the aliasing principle.

  2. 2.

    We include only even values here, because the zero padding produces distracting artifacts in the odd coefficients.

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  2. Amiot, E.: Music Through Fourier Space. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-45581-5

    Book  Google Scholar 

  3. Brown, J.C.: Determination of the meter of musical scores by autocorrelation. J. Acoust. Soc. Am. 94(4), 1953–1957 (1993)

    Article  Google Scholar 

  4. Chiu, M.: Form as meter: metric forms through Fourier space. Master’s thesis, Boston University (2018)

    Google Scholar 

  5. Cohn, R.: Preferatory note: how music theorists model time. J. Music Theory 65(1), 11–16 (2021)

    Article  Google Scholar 

  6. Eck, D.: Identifying metrical and temporal structure with an autocorrelation phase matrix. Music. Percept. 24(2), 167–176 (2006)

    Article  Google Scholar 

  7. Flannick, J.E., Hall, R.W., Kelly, R.: Detecting meter in recorded music. In: Sarhangi, R., Moody, R.V. (eds.) Renaissance Banff: Mathematics, Music, Art, Culture, pp. 195–202. Bridges Proceedings (2005)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music, Reissue, with a New Preface. MIT Press (1996)

    Google Scholar 

  10. Povel, D.J., Essens, P.: Perception of temporal patterns. Music. Percept. 2(4), 411–440 (1985)

    Article  Google Scholar 

  11. Sethares, W.A., Staley, T.W.: Meter and periodicity in musical performance. J. New Music Res. 22(5), 149–158 (2001)

    Article  Google Scholar 

  12. Eerola, T., Toiviainen, P.: MIDI Toolbox: MATLAB Tools for Music Research. University of Jyväskylä, Finland (2004)

    Google Scholar 

  13. White, C.W.: Meter’s influence on theoretical and corpus-derived harmonic grammars. Indiana Theory Rev. 35(1–2), 93–116 (2018)

    Article  Google Scholar 

  14. White, C.W.: Autocorrelation of pitch-event vectors in meter finding. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 287–296. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_23

    Chapter  Google Scholar 

  15. White, C.W.: Some observations on autocorrelated patterns within computational meter identification. J. Math. Music 15(2), 181–193 (2021)

    Article  Google Scholar 

  16. White, C.W., Quinn, I.: The Yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50–58 (2016)

    Article  Google Scholar 

  17. Yust, J.: Organized Time: Rhythm, Tonality, and Form. Oxford University Press, NY (2018)

    Book  Google Scholar 

  18. Yust, J.: Steve Reich’s signature rhythm and an introduction to rhythmic qualities. Music Theory Spectr. 43(1), 74–90 (2021)

    Article  Google Scholar 

  19. Yust, J.: Periodicity-based descriptions of rhythms and Steve Reich’s rhythmic style. J. Music Theory 65(2), 325–374 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiu, M., Yust, J. (2022). Identifying Metric Types with Optimized DFT and Autocorrelation Models. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics