Skip to main content

Planning a Mass Vaccination Campaign with Balanced Staff Engagement

  • Conference paper
  • First Online:
Information Technology for Management: Business and Social Issues (FedCSIS-AIST 2021, ISM 2021)

Abstract

The insurgence of the COVID pandemic calls for mass vaccination campaigns worldwide. Pharmaceutical companies struggle to ramp up their production to meet the demand for vaccines but cannot always guarantee a perfectly regular delivery schedule. On the other hand, governments must devise plans to have most of their population vaccinated in the shortest possible time and have the vaccine booster administered after a precise time interval. The combination of delivery uncertainties and those time requirements may make such planning difficult. In this paper, we propose several heuristic strategies to meet those requirements in the face of delivery uncertainties. The outcome of those strategies is a daily vaccination plan that suggests how many initial doses and boosters can be administered each day. We compare the results with the optimal plan obtained through linear programming, which however assumes that we know in advance the whole delivery schedule. As for performance metrics, we consider both the vaccination time (which has to be as low as possible) and the balance between vaccination capacities over time (which has to be as uniform as possible). The strategies achieving the best trade-off between those competing requirements turn out to be the q-days ahead strategies, which put aside doses to guarantee that we do not run out of stock on just the next q days. Increasing the look-ahead period, i.e. q, allows to achieve a lower number of out-of-stock days, though worsening the other performance indicators.

This work is partially supported by MIUR PRIN Project AHeAD (Efficient Algorithms for HArnessing Networked Data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is to be noted that this paper deals with the case where a single booster (i.e., second dose) is administered during the planning horizon. Still, the approach can easily include the possibility of further boosters (e.g., third and fourth dose), which are under discussion these days.

  2. 2.

    This objective is pursued together with the constraint that all (or the largest possible part of) the supplied doses have to be used. Without such a constraint, an obvious optimal solution would be not to administer any vaccine.

  3. 3.

    The actual daily shipments to Italy can be observed in the datasets provided at https://github.com/italia/covid19-opendata-vaccini under an OpenData agreement.

  4. 4.

    While we showed that single-dose vaccines might be easily included in our models, due to scarcity of data about this type of immunization, in the remainder of the paper we only present algorithms and experiments concerning two-doses vaccines.

References

  1. Yesudhas, D., Srivastava, A., Gromiha, M.M.: COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 49(2), 199–213 (2020). https://doi.org/10.1007/s15010-020-01516-2

    Article  Google Scholar 

  2. Abbasi, K.: COVID-19: why prioritising prevention matters in a pandemic of cures. BMJ Br. Med. J. 373(1275) (2021). https://doi.org/10.1136/bmj.n1275

  3. Dai, H., Han, J., Lichtfouse, E.: Smarter cures to combat COVID-19 and future pathogens: a review. Environ. Chem. Lett. 19(4), 2759–2771 (2021). https://doi.org/10.1007/s10311-021-01224-9

    Article  Google Scholar 

  4. Mallapaty, S.: Can COVID vaccines stop transmission? Scientists race to find answers. Nature (2021). https://doi.org/10.1038/d41586-021-00450-z

  5. Desmond, A., Offit, P.A.: On the shoulders of giants—from Jenner’s cowpox to mRNA COVID vaccines. New Engl. J. Med. 384(12), 1081–1083 (2021). https://doi.org/10.1056/NEJMp2034334

    Article  Google Scholar 

  6. Wouters, O.J., et al.: Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet 397(10278), 1023–1034 (2021). https://doi.org/10.1016/S0140-6736(21)00306-8

    Article  Google Scholar 

  7. Feinmann, J.: COVID-19: global vaccine production is a mess and shortages are down to more than just hoarding. BMJ Br. Med. J. (Online) 375, 2375 (2021). https://doi.org/10.1136/bmj.n2375

  8. Foderaro, S., Naldi, M., Nicosia, G., Pacifici, A.: Mass vaccine administration under supply uncertainty. In: 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 393–402 (2021). https://doi.org/10.15439/2021F78

  9. Naldi, M., Nicosia, G., Pacifici, A., Pferschy, U.: Profit-fairness trade-off in project selection. Socio Econ. Plan. Sci. 67, 133–146 (2019). https://doi.org/10.1016/j.seps.2018.10.007

    Article  Google Scholar 

  10. Iskander, J., Strikas, R.A., Gensheimer, K.F., Cox, N.J., Redd, S.C.: Pandemic influenza planning, United States, 1978–2008. Emerg. Infect. Dis. 19(6), 879–885 (2013). https://doi.org/10.3201/eid1906.121478

    Article  Google Scholar 

  11. Fedson, D.S.: Preparing for pandemic vaccination: an international policy agenda for vaccine development. J. Public Health Policy 26(1), 4–29 (2005). https://doi.org/10.1057/palgrave.jphp.3200008

    Article  Google Scholar 

  12. Gostin, L.O.: Pandemic influenza: public health preparedness for the next global health emergency. J. Law Med. Ethics 32(4), 565–573 (2004). https://doi.org/10.1111/j.1748-720x.2004.tb01962.x

    Article  Google Scholar 

  13. Heymann, D.L., Aylward, R.B.: Mass vaccination: when and why. In: Plotkin, S.A. (ed.) Mass Vaccination: Global Aspects — Progress and Obstacles. CT MICROBIOLOGY, vol. 304, pp. 1–16. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-36583-4_1

  14. Bagcchi, S.: The world’s largest COVID-19 vaccination campaign. Lancet Infect. Dis. 21(3), 323 (2021). https://doi.org/10.1016/S1473-3099(21)00081-5

    Article  Google Scholar 

  15. Sah, R., et al.: AZD1222 (Covishield) vaccination for COVID-19: experiences, challenges and solutions in Nepal. Travel Med. Infect. Dis. 40(101989) (2021). https://doi.org/10.1016/j.tmaid.2021.101989

  16. Mathieu, E., et al.: A global database of COVID-19 vaccinations. Nat. Hum. Behav. 5(7), 1–7 (2021). https://doi.org/10.1038/s41562-021-01122-8

    Article  Google Scholar 

  17. Rambhia, K.J., Watson, M., Sell, T.K., Waldhorn, R., Toner, E.: Mass vaccination for the 2009 h1n1 pandemic: approaches, challenges, and recommendations. Biosecurity Bioterrorism Biodefense Strategy Pract. Sci. 8(4), 321–330 (2010). https://doi.org/10.1089/bsp.2010.0043

    Article  Google Scholar 

  18. Hessel, L., et al.: Pandemic influenza vaccines: meeting the supply, distribution and deployment challenges. Influenza Other Respir. Viruses 3(4), 165–170 (2009). https://doi.org/10.1111/j.1750-2659.2009.00085.x

    Article  Google Scholar 

  19. Harris, P., Moss, D.: Managing through the COVID second wave: public affairs and the challenge of COVID vaccination. J. Public Affairs 21(e2642) (2021)

    Google Scholar 

  20. De Boeck, K., Decouttere, C., Vandaele, N.: Vaccine distribution chains in low- and middle-income countries: a literature review. Omega 97, 102097 (2020). https://doi.org/10.1016/j.omega.2019.08.004, https://www.sciencedirect.com/science/article/pii/S0305048319304098

  21. Yen, C., et al.: The development of global vaccine stockpiles. Lancet Infect. Dis. 15(3), 340–347 (2015). https://doi.org/10.1016/S1473-3099(14)70999-5

    Article  Google Scholar 

  22. Al Khalaf, R., Alfonsi, T., Ceri, S., Bernasconi, A.: CoV2K: a knowledge base of SARS-CoV-2 variant impacts. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 274–282. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_18

    Chapter  Google Scholar 

  23. Rosen, B., Waitzberg, R., Israeli, A.: Israel’s rapid rollout of vaccinations for COVID-19. Israel J. Health Policy Res. 10(1), 6 (2021). https://doi.org/10.1186/s13584-021-00440-6

    Article  Google Scholar 

  24. Liapis, A., et al.: A position paper on improving preparedness and response of health services in major crises. In: Bellamine Ben Saoud, N., Adam, C., Hanachi, C. (eds.) ISCRAM-med 2015. LNBIP, vol. 233, pp. 205–216. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24399-3_18

    Chapter  Google Scholar 

  25. Yaylali, E., Ivy, J.S., Taheri, J.: Systems engineering methods for enhancing the value stream in public health preparedness: the role of Markov models, simulation, and optimization. Public Health Rep. 129(6_suppl4), 145–153 (2014). https://doi.org/10.1177/00333549141296s419

  26. Aaby, K., Herrmann, J.W., Jordan, C.S., Treadwell, M., Wood, K.: Montgomery county’s public health service uses operations research to plan emergency mass dispensing and vaccination clinics. Interfaces 36(6), 569–579 (2006). https://doi.org/10.1287/inte.1060.0229

    Article  Google Scholar 

  27. Lee, E.K., Maheshwary, S., Mason, J., Glisson, W.: Decision support system for mass dispensing of medications for infectious disease outbreaks and bioterrorist attacks. Ann. Oper. Res. 148(1), 25–53 (2006). https://doi.org/10.1007/s10479-006-0087-7

    Article  MATH  Google Scholar 

  28. Bertsimas, D., et al.: Optimizing vaccine allocation to combat the COVID-19 pandemic. medRxiv (2020). https://doi.org/10.1101/2020.11.17.20233213

  29. Bertsimas, D., Digalakis, V., Jr., Jacquillat, A., Li, M.L., Previero, A.: Where to locate COVID-19 mass vaccination facilities? Naval Res. Logistics (NRL) 69(2), 179–200 (2021). https://doi.org/10.1002/nav.22007

    Article  Google Scholar 

  30. Karczmarczyk, A., Wątróbski, J., Jankowski, J.: Multi-criteria approach to planning of information spreading processes focused on their initialization with the use of sequential seeding. In: Ziemba, E. (ed.) AITM/ISM -2019. LNBIP, vol. 380, pp. 116–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43353-6_7

    Chapter  Google Scholar 

  31. Graham, B.S.: Rapid COVID-19 vaccine development. Science 368(6494), 945–946 (2020). https://doi.org/10.1126/science.abb8923

    Article  Google Scholar 

  32. Chen, W.-H., Strych, U., Hotez, P.J., Bottazzi, M.E.: The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7(2), 61–64 (2020). https://doi.org/10.1007/s40475-020-00201-6

    Article  Google Scholar 

  33. Rosa, S.S., Prazeres, D.M., Azevedo, A.M., Marques, M.P.: mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39(16), 2190–2200 (2021). https://doi.org/10.1016/j.vaccine.2021.03.038

    Article  Google Scholar 

  34. Naldi, M., Salaris, C.: Rank-size distribution of teletraffic and customers over a wide area network. Eur. Trans. Telecommun. 17(4), 415–421 (2006). https://doi.org/10.1002/ett.1084

    Article  Google Scholar 

  35. Naldi, M.: A probability model for the size of investment projects. In: 2015 IEEE European Modelling Symposium (EMS), pp. 169–173. IEEE (2015). https://doi.org/10.1109/EMS.2015.35

  36. Beckett, S., et al.: Zero-inflated Poisson (ZIP) distribution: parameter estimation and applications to model data from natural calamities. Involve J. Math. 7(6), 751–767 (2014). https://doi.org/10.2140/involve.2014.7.751

    Article  MathSciNet  MATH  Google Scholar 

  37. Motta, M., Sylvester, S., Callaghan, T., Lunz-Trujillo, K.: Encouraging COVID-19 vaccine uptake through effective health communication. Front. Polit. Sci. 3, 1 (2021). https://doi.org/10.3389/fpos.2021.630133

    Article  Google Scholar 

  38. Barda, N., et al.: Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet 398(10316), 2093–2100 (2021). https://doi.org/10.1016/S0140-6736(21)02249-2

    Article  Google Scholar 

  39. Marini, C., Nicosia, G., Pacifici, A., Pferschy, U.: Strategies in competing subset selection. Ann. Oper. Res. 207(1), 181–200 (2013). https://doi.org/10.1007/s10479-011-1057-2

    Article  MathSciNet  MATH  Google Scholar 

  40. Nicosia, G., Pacifici, A., Pferschy, U.: Competitive subset selection with two agents. Discrete Appl. Math. 159(16), 1865–1877 (2011). https://doi.org/10.1016/j.dam.2010.11.011

    Article  MathSciNet  MATH  Google Scholar 

  41. Pferschy, U., Nicosia, G., Pacifici, A.: A Stackelberg knapsack game with weight control. Theoret. Comput. Sci. 799, 149–159 (2019). https://doi.org/10.1016/j.tcs.2019.10.007

    Article  MathSciNet  MATH  Google Scholar 

  42. Pferschy, U., Nicosia, G., Pacifici, A., Schauer, J.: On the Stackelberg knapsack game. Eur. J. Oper. Res. 291(1), 18–31 (2021). https://doi.org/10.1016/j.ejor.2020.09.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Naldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foderaro, S., Naldi, M., Nicosia, G., Pacifici, A. (2022). Planning a Mass Vaccination Campaign with Balanced Staff Engagement. In: Ziemba, E., Chmielarz, W. (eds) Information Technology for Management: Business and Social Issues. FedCSIS-AIST ISM 2021 2021. Lecture Notes in Business Information Processing, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-030-98997-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98997-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98996-5

  • Online ISBN: 978-3-030-98997-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics