Skip to main content

Development of a Hybrid Modeling Methodology for Oscillating Systems with Friction

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

Modeling of dynamical systems is essential in many areas of engineering, such as product development and condition monitoring. Currently, the two main approaches in modeling of dynamical systems are the physical and the data-driven one. Both approaches are sufficient for a wide range of applications but suffer from various disadvantages, e.g., a reduced accuracy due to the limitations of the physical model or due to missing data. In this work, a methodology for modeling dynamical systems is introduced, which expands the area of application by combining the advantages of both approaches while weakening the respective disadvantages. The objective is to obtain increased accuracy with reduced complexity. Two models are used, a physical model predicts the system behavior in a simplified manner, while the data-driven model accounts for the discrepancy between reality and the simplified model. This hybrid approach is validated experimentally on a double pendulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sextro, W.: Dynamic Contact Problems with Friction, 2nd edn. Springer, Heidelberg (2007)

    Google Scholar 

  2. Klus, S., Nüske, F., Peitz, S., Nieman, J.-H., Clementi, C., Schütte, C.: Data-driven approximation of the Koopman generator: model reduction, system identification, and control. Physica D 406, 132416 (2020)

    Article  MathSciNet  Google Scholar 

  3. Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P., Koumoutakos, P.: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory network. Proc. R. Soc. A Math. Phys. Eng. Sci. 474, 20170844 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  5. Kaiser, E., et al.: Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365–414 (2014)

    Article  Google Scholar 

  6. von Stosch, M., Oliveira, R., Peres, J., Feyo de Azevedo, S.: Hybrid semi-parametric modeling in process systems engineering: past, present and future. Comput. Chem. Eng. 60, 86–101 (2014)

    Google Scholar 

  7. von Stosch, M., Glassey, J.: Benefits and challenges of hybrid modeling in the process industries: an introduction. In: Hybrid Modeling in Process Industries, pp. 1–12. CRC Press, Boca Raton (2018)

    Google Scholar 

  8. Isermann, R., Münchof, M.: Identification of Dynamic Systems: An Introduction with Applications, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-540-78879-9

    Book  Google Scholar 

  9. Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive flow control with limited sensor data and online learning. Theoret. Comput. Fluid Dyn. 34(4), 577–591 (2020). https://doi.org/10.1007/s00162-020-00520-4

    Article  MathSciNet  Google Scholar 

  10. Halfmann, C., Holzmann, H.: Adaptive Modelle für die Kraftfahrzeugdynamik, 1st edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18215-0

    Book  Google Scholar 

  11. Kramer, M.A., Thompson, M.L., Bhagat, P.M.: Embedding theoretical models in neural networks. In: American Control Conference, pp. 475–479 (1992)

    Google Scholar 

  12. Sohlberg, B., Jacobsen, E.W.: Grey box modelling - branches and experiences. In: Proceeding of the 17th IFAC World Congress, pp. 11415–11420 (2008)

    Google Scholar 

  13. Matei, I., de Kleer, H., Feldman, A., Rai, R., Chowdhury, S.: Hybrid modeling: applications in real-time diagnosis. arXiv:2003.02671 (2020)

  14. von Stosch, M., Portela, R.M.C., Oliveira, R.: Hybrid model structures for knowledge integration. In: Hybrid Modeling in Process Industries, pp. 13–35. CRC Press, Boca Raton (2018)

    Google Scholar 

  15. Thompson, M.L., Kramer, M.A.: Modeling chemical processes using prior knowledge and neural networks. AIChE J. 40(8), 1328–1340 (1994)

    Article  Google Scholar 

  16. Deuflhard, P., Hohmann, A.: Numerische Mathematik 1, 4th edn. De Gruyter, Berlin (2008)

    MATH  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Google Scholar 

  18. Alpaydin, E.: Maschinelles Lernen, 2nd edn. De Gruyter Oldenbourg, Berlin, Boston (2019)

    Book  Google Scholar 

  19. Agarwal, M.: Combining neural and conventional paradigms for modelling, prediction and control. Int. J. Syst. Sci. 28(1), 65–81 (1997)

    Article  Google Scholar 

  20. Kaheman, K., Kaiser, E., Strom, B., Kutz, N., Brunton, S. L.: Learning discrepancy models from experimental data. arXiv:1909.08574 (2019)

  21. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  Google Scholar 

  22. Champion, K., Lusch, B., Kutz, N., Brunton, S.L.: Data-driven discovery of coordinates and governing equations. Proc. Natl. Acad. Sci. 116(45), 22445–22451 (2019)

    Article  MathSciNet  Google Scholar 

  23. Forster, O.: Analysis 1: Differential- und Integralrechnung einer Veränderlichen, 12th edn. Springer Spektrum, Wiesbaden (2016)

    Book  Google Scholar 

  24. Dankert, H., Dankert, J.: Technische Mechanik: computerunterstützt, 2nd edn. B. G. Teubner, Stuttgart (1995)

    Google Scholar 

  25. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.: Chaos in a double pendulum. Am. J. Phys. Am. Assoc. Phys. Teachers 60, 491–499 (1992)

    Google Scholar 

  26. Magnus, K., Popp, K., Sextro, W.: Schwingungen, 10th edn. Springer Vieweg, Wiesbaden (2016). https://doi.org/10.1007/978-3-658-13821-9

  27. Breiman, K., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees, 1st edn. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  28. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meike Wohlleben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wohlleben, M., Bender, A., Peitz, S., Sextro, W. (2022). Development of a Hybrid Modeling Methodology for Oscillating Systems with Friction. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics