Skip to main content

Improved Update Rule and Sampling of Stochastic Gradient Descent with Extreme Early Stopping for Support Vector Machines

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

We propose three techniques for improving accuracy and speed of margin stochastic gradient descent support vector machines (MSGDSVM). The first technique is to use sampling with full replacement. The second technique is to use the new update rule derived from the squared hinge loss function. The third technique is to limit the number of values for tuning of the margin hyperparameter M. We also provide theoretical analysis of a novel optimization problem for the proposed update rule. The first two techniques improve accuracy of MSGDSVM and the last one speed of tuning. Experiments show that the proposed method achieves superior accuracy compared to MSGDSVM for binary and multiclass classification, with similar generalization performance to sequential minimal optimization (SMO) and is faster than MSGDSVM.

M. Orchel—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast Kernel classifiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005). http://jmlr.org/papers/v6/bordes05a.html

  2. Conditional (ternary) operator, July 2021. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

  3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000). https://doi.org/10.1017/CBO9780511801389

  4. Delgado, M.F., Cernadas, E., Barro, S., Amorim, D.G.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014). http://dl.acm.org/citation.cfm?id=2697065

  5. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org/

  6. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391–1415 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Huang, X., Shi, L., Suykens, J.A.K.: Ramp loss linear programming support vector machine. J. Mach. Learn. Res. 15(1), 2185–2211 (2014). http://dl.acm.org/citation.cfm?id=2670321

  8. Japkowicz, N., Shah, M. (eds.): Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, New York (2011)

    Google Scholar 

  9. LIBSVM data sets, June 2011. www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

  10. Melki, G., Kecman, V., Ventura, S., Cano, A.: OLLAWV: online learning algorithm using worst-violators. Appl. Soft Comput. 66, 384–393 (2018). https://doi.org/10.1016/j.asoc.2018.02.040

    Article  Google Scholar 

  11. Orchel, M.: Incorporating prior knowledge into SVM algorithms in analysis of multidimensional data. Ph.D. thesis, AGH University of Science and Technology (2013). https://doi.org/10.13140/RG.2.1.5004.9441

  12. Orchel, M., Suykens, J.A.K.: Fast hyperparameter tuning for support vector machines with stochastic gradient descent. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 481–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64580-9_40

    Chapter  Google Scholar 

  13. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011). https://doi.org/10.1007/s10107-010-0420-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Steinwart, I., Hush, D.R., Scovel, C.: Training SVMs without offset. J. Mach. Learn. Res. 12, 141–202 (2011). http://portal.acm.org/citation.cfm?id=1953054

Download references

Acknowledgments

The theoretical analysis of the method is supported by the National Science Centre in Poland, UMO-2015/17/D/ST6/04010, titled “Development of Models and Methods for Incorporating Knowledge to Support Vector Machines” and the data driven method is supported by the European Research Council under the European Union’s Seventh Framework Programme. Johan Suykens acknowledges support by ERC Advanced Grant E-DUALITY (787960), KU Leuven C1, FWO G0A4917N. This paper reflects only the authors’ views, the Union is not liable for any use that may be made of the contained information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Orchel .

Editor information

Editors and Affiliations

9 Appendix

9 Appendix

We provide a derivation of the update rule (6).

Proof

The proof is based on the primal problem OP 4. The technique of a proof is similar as presented in [10]. First, we compute the gradient of the objective function in (15) and we get

$$\begin{aligned} \begin{gathered} \frac{\partial W}{\partial \boldsymbol{w}} = \boldsymbol{w} + \sum _{i=1}^n 2\left( M - y_if\left( \boldsymbol{x_i}\right) \ge 0\ ? \ 1 - y_i\boldsymbol{w}\cdot \varphi \left( \boldsymbol{x_i}\right) : 0\right) \\ \cdot \left( M - y_i\boldsymbol{w}\cdot \varphi \left( \boldsymbol{x_i}\right) \ge 0 \ ? \ -y_i\varphi \left( \boldsymbol{x_i}\right) \ :\ 0\right) . \end{gathered} \end{aligned}$$

Because we have the same condition in the last two factors, we can write

$$\begin{aligned} \frac{\partial W}{\partial \boldsymbol{w}} = \boldsymbol{w} + 2\sum _{i=1}^n M - y_i\boldsymbol{w}\cdot \varphi \left( \boldsymbol{x_i}\right) \ge 0 \ ? \ -\left( 1 - y_i\boldsymbol{w}\cdot \varphi \left( \boldsymbol{x_i}\right) \right) y_i\varphi \left( \boldsymbol{x_i}\right) \ :\ 0 . \end{aligned}$$

After substitution (18), we get

$$\begin{aligned} \begin{gathered} \sum _{i=1}^n y_i\alpha _i\varphi \left( \boldsymbol{x_i}\right) + 2\sum _{i=1}^n M - y_i\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_i}\right) \ge 0 \ ? \\ \ -\Bigl (1 - y_i\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_i}\right) \Bigr )y_i\varphi \left( \boldsymbol{x_i}\right) \ :\ 0 . \end{gathered} \end{aligned}$$

For the stochastic update, we approximate the above formula (which should be equal to 0 for the optimal solution), so we have

$$\begin{aligned} \begin{gathered} ny_k\alpha _k\varphi \left( \boldsymbol{x_k}\right) + 2n \Bigl (M - y_k\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_k}\right) \ge 0\Bigr ) \ ? \\ \ -\Bigl (1 - y_k\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_k}\right) \Bigr )y_k\varphi \left( \boldsymbol{x_k}\right) \ :\ 0 = 0 . \end{gathered} \end{aligned}$$

We can generate an update term as for the ordinary iteration method by transforming the equation into a fixed point form for \(\alpha _k\) by dividing by \(ny_k\varphi \left( \boldsymbol{x_k}\right) \). We assume that \(\varphi \left( \boldsymbol{x_k}\right) \ne 0\) for any coefficient. For the RBF kernel, it means that each component of \(\boldsymbol{x}\) should be different from 0. We move all terms except the first one to the right, and we get

$$\begin{aligned} \begin{gathered} \alpha _k \leftarrow 2\Bigl (M - y_k\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_k}\right) \ge 0\Bigr ) \ ? \\ \ 1 - y_k\sum _{j=1}^n y_j\alpha _j\varphi \left( \boldsymbol{x_j}\right) \cdot \varphi \left( \boldsymbol{x_k}\right) \ :\ 0 . \end{gathered} \end{aligned}$$

We can skip multiplier 2, because it will not affect the final decision boundary. Assuming also initialization with zero and extreme early stopping (updating each parameter maximally one time), we get

$$\begin{aligned} \begin{gathered} \alpha _k \leftarrow \left( M - y_kf_{k-1}\left( \boldsymbol{x_k}\right) \ge 0\right) \ ? \ 1 - y_kf_{k-1}\left( \boldsymbol{x_k}\right) \ :\ 0 . \end{gathered} \end{aligned}$$

By incorporating the additional assumption that the weight is positive, we get

$$\begin{aligned} \begin{gathered} \alpha _k \leftarrow \left( M - y_kf_{k-1}\left( \boldsymbol{x_k}\right) \ge 0\right) \ ? \ \max \left\{ 0, 1 - y_kf_{k-1}\left( \boldsymbol{x_k}\right) \right\} \ :\ 0 . \end{gathered} \end{aligned}$$

By returning to the original representation with \(\beta _j\) weights, we get (6).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orchel, M., Suykens, J.A.K. (2022). Improved Update Rule and Sampling of Stochastic Gradient Descent with Extreme Early Stopping for Support Vector Machines. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics