Skip to main content

Multipath QUIC – Directions of the Improvements

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2021)

Abstract

The multipath transmission becomes the recognized alternative for traditional Quality of Service architectures. Recently, the multipath version of TCP protocol and its modern replacement – QUIC – has been proposed. The paper presents the dynamic properties of the data transfer between physical systems, engaging the multipath version of QUIC protocol (MPQUIC) which inherits the properties of its predecessors. The advantages and weaknesses of the transmission are emphasized and compared to the singlepath QUIC. While QUIC is designed to convey HTTP traffic, in the paper, general-purpose networking is investigated. Based on the measurements, the use recommendations are given together with the directions of improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qadir, J., Ali, A., Yau, K.A., Sathiaseelan, A., Crowcroft, J.: Exploiting the power of multiplicity: a holistic survey of network-layer multipath. IEEE Commun. Surv. Tutor. 17(4), 2176–2213 (2015). 4Q

    Article  Google Scholar 

  2. Barreiros, M., Lundqvist, P.: QoS-Enabled Networks: Tools and Foundations. Wiley, Hoboken (2016)

    Book  Google Scholar 

  3. Easley, R., Guo, H., Krämer, J.: From net neutrality to data neutrality. Inf. Syst. Res. 29(2), 253–272 (2015)

    Article  Google Scholar 

  4. Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L.: Host-to-host congestion control for TCP. IEEE Commun. Surv. Tutor. 12(3), 304–342 (2010). 3Q

    Article  Google Scholar 

  5. Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: TCP extensions for multipath operation with multiple addresses. RFC 8684 (2020)

    Google Scholar 

  6. Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: From theory to practice. Technical report, Université Catholique de Louvain (2011)

    Google Scholar 

  7. Barré, S., Paasch, C.: MultiPath TCP – Linux kernel implementation. http://www.multipath-tcp.org

  8. Langley, A., et al.: The QUIC transport protocol: design and internet-scale deployment. In: Proceedings of ACM SIGCOMM, New York, USA, pp. 183–196 (2017)

    Google Scholar 

  9. De Coninck, Q., Bonaventure, O.: Multipath QUIC: design and evaluation. In: Proceedings of 13th International Conference on emerging Networking EXperiments and Technologies (CoNEXT 2017), New York, NY, USA, pp. 160–166 (2017)

    Google Scholar 

  10. De Coninck, Q., Bonaventure, O.: Multiflow QUIC: a generic multipath transport protocol. IEEE Commun. Mag. 59(5), 108–113 (2021)

    Article  Google Scholar 

  11. Viernickel, T., Froemmgen, A., Rizk, A., Koldehofe, B., Steinmetz, R.: Multipath QUIC: a deployable multipath transport protocol. In: Proceedings of IEEE International Conference on Communications (ICC), Kansas City, MO, USA, pp. 1–7 (2018)

    Google Scholar 

  12. De Coninck, Q., Bonaventure, O.: MultipathTester: comparing MPTCP and MPQUIC in mobile environments. In: Proceedings of Network Traffic Measurement and Analysis Conference (TMA), Paris, France, pp. 221–226 (2019)

    Google Scholar 

  13. Vu, V.A., Walker, B.: On the latency of multipath-QUIC in real-time applications. In: 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–7 (2020)

    Google Scholar 

  14. Li, M., et al.: Multipath transmission for the internet: a survey. IEEE Commun. Surv. Tut 18(4), 2887–2925 (2016). Q4

    Article  Google Scholar 

  15. Yedugundla, K., et al.: Is multipath transport suitable for latency sensitive traffic? Comput. Netw. 105, 1–21 (2016)

    Article  Google Scholar 

  16. Tang, W., Fu, Y., Dong, P., Yang, W., Yang, B., Xiong, N.: A MPTCP scheduler combined with congestion control for short flow delivery in signal transmission. IEEE Access 7, 116195–116206 (2019)

    Article  Google Scholar 

  17. Stewart, R. (ed.): Stream control transmission protocol. RFC 4960 (2007)

    Google Scholar 

  18. Wang, J., Gao, Y., Xu, C.: A multipath QUIC scheduler for mobile HTTP/2. In: Proceedings of 3rd Asia-Pacific Workshop on Networking 2019 (APNet 2019), New York, NY, USA, pp. 43–49 (2019)

    Google Scholar 

  19. Shi, X., Wang, L., Zhang, F., Zhou, B., Liu, Z.: PStream: priority-based stream scheduling for heterogeneous paths in multipath-QUIC. In: Proceedings of 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, pp. 1–8 (2020)

    Google Scholar 

  20. Chiariotti, F., Deshpande, A.A., Giordani, M., Antonakoglou, K., Mahmoodi, T., Zanella, A.: QUIC-EST: a QUIC-enabled scheduling and transmission scheme to maximize VoI with correlated data flows. IEEE Comm. Mag. 59(4), 30–36 (2021)

    Article  Google Scholar 

  21. Khalili, R., Gast, N., Popovic, M., Le Boudec, J.-Y.: MPTCP is not Pareto-optimal: performance issues and a possible solution. IEEE/ACM Trans. Netw. 21(5), 1651–1665 (2013)

    Article  Google Scholar 

  22. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP schedulers. In: Proceedings of on ACM SIGCOMM CSWS, pp. 27–32, Chicago, USA (2014)

    Google Scholar 

  23. Morawski, M., Ignaciuk, P.: Energy-efficient scheduler for MPTCP data transfer with independent and coupled channels. Comp. Commun. 132, 56–64 (2018)

    Article  Google Scholar 

  24. Hurtig, P., Grinnemo, K., Brunstrom, A., Ferlin, S., Alay, Ö., Kuhn, N.: Low-latency scheduling in MPTCP. IEEE/ACM Trans. Netw. 27(1), 302–315 (2019)

    Article  Google Scholar 

  25. Ferlin, S., Alay, Ö., Mehani, O., Boreli, R.: BLEST: blocking estimation-based MPTCP scheduler for heterogeneous networks. In: Proceedings of IFIP Networking Conference Workshops, pp. 431–439, Vienna, Austria (2016)

    Google Scholar 

  26. Floyd, S., et al.: An extension to the selective acknowledgement (SACK) option for TCP. RFC 2883 (2000)

    Google Scholar 

  27. Gettys, J.: Bufferbloat: dark buffers in the internet. IEEE Internet Comput. 15(3), 96 (2011)

    Article  Google Scholar 

  28. Kimura, B.Y.L., Lima, D.C.S.F., Villas, L.A., Loureiro, A.A.F.: Interpath contention in multipath TCP disjoint paths. IEEE/ACM Trans. Netw. 27(4), 1387–1400 (2019)

    Article  Google Scholar 

  29. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. ACM Queue 14(5), 20–53 (2016)

    Article  Google Scholar 

  30. Abdelsalam, A., Luglio, M., Patriciello, N., Roseti, C., Zampognaro, F.: TCP wave over Linux: a disruptive alternative to the traditional TCP window approach. Comp. Netw. 184, 1–14 (2021)

    Article  Google Scholar 

  31. Ferlin, S., Kucera, S., Claussen, H., Alay, Ö.: MPTCP meets FEC: supporting latency-sensitive applications over heterogeneous networks. IEEE/ACM Trans. Netw. 26(5), 2005–2018 (2018)

    Article  Google Scholar 

  32. Michel, F., De Coninck, Q., Bonaventure, O.: QUIC-FEC: bringing the benefits of forward erasure correction to QUIC. In: Proceedings of IFIP Networking Conference, Warsaw, Poland, pp. 1–9 (2019)

    Google Scholar 

  33. Morawski, M., Ignaciuk, P.: A green multipath TCP framework for industrial internet of things applications. Comp. Netw 187, 107831 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Science Centre, Poland, under Grant 2021/41/B/ST7/00108 “Robust control solutions for multi-channel networked flows”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Morawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morawski, M., Karbowańczyk, M. (2022). Multipath QUIC – Directions of the Improvements. In: Xiang, W., Han, F., Phan, T.K. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-93479-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93479-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93478-1

  • Online ISBN: 978-3-030-93479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics