Skip to main content

Biochar: A Game Changer for Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

The non-sustainability of soil management and agricultural practices that can damage the environment and enhance the risk of food insecurity are the emerging concerns globally. Sustainable agriculture endeavours to use a few conservation practices that can reduce the hostile effects of land-use intensification. Among the different conservation practices, micronutrient-enriched biochar (BC) is an emerging soil amendment that has proven as an accessible and critical input for sustainable agriculture. It could efficiently sequester a vast amount of carbon in the soil, thus increasing soil productivity, repairing soil erosion and minimising agriculture-related greenhouse gas emissions. Besides, it can also act as a reservoir of micro- and macronutrients. Research has also shown that using biochar can increase the crop productivity capacity of soil under various stresses and advance world food security. Over the last decade, many experiments have been carried out on biochar to see if it can be used to boost sustainable agriculture. This chapter discusses biochar’s important properties, its relationship with soil microflora and its ability to boost crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubakar, M. S., & Attanda, M. L. (2013). The concept of sustainable agriculture: Challenges and prospects. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 53, 012001. https://doi.org/10.1088/1757-899X/53/1/012001

  • Ajema, L. (2018). Effects of biochar application on beneficial soil organism. International journal of research studies in science. Engineering Technology, 5, 9–18.

    Google Scholar 

  • Alhashimi, H. A., & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 118, 13–26. https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  • Amen, R., Bashir, H., Bibi, I., Shaheen, S. M., Niazi, N. K., … Rinklebe, J. (2020). A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 396. https://doi.org/10.1016/j.cej.2020.125195, PubMed: 125195.

  • Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5–6), 309–320. https://doi.org/10.1016/j.pedobi.2011.07.005

    Article  CAS  Google Scholar 

  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., … Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and road map to commercialisation of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473

    Article  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

    Article  CAS  Google Scholar 

  • Beheshti, M., Etesami, H., & Alikhani, H. A. (2017). Interaction study of biochar with phosphate-solubilising bacterium on phosphorus availability in calcareous soil. Archives of Agronomy and Soil Science, 63(11), 1572–1581. https://doi.org/10.1080/03650340.2017.1295138

    Article  CAS  Google Scholar 

  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Bonanomi, G., Ippolito, F., & Scala, F. (2015). A" black" future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. Journal of Plant Pathology, 97, 223–234.

    Google Scholar 

  • Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., … Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., & Ahmedna, M. (2010). Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Science, 175(1), 10–14. https://doi.org/10.1097/SS.0b013e3181cb7f46

    Article  CAS  Google Scholar 

  • Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems and Environment, 191, 5–16. https://doi.org/10.1016/j.agee.2013.10.009

    Article  CAS  Google Scholar 

  • de Jesus Duarte, S., Glaser, B., & Pellegrino Cerri, C. E. (2019). Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy, 9(4), 165. https://doi.org/10.3390/agronomy9040165

    Article  CAS  Google Scholar 

  • DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. Biochar for Environmental Management: Science, Technology and Implementation, 2, 421–454.

    Google Scholar 

  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., … Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 1–18.

    Article  Google Scholar 

  • Elmer, W., White, J., & Pignatello, J. (2010). Impact of biochar addition to soil on the bioavailability of chemicals important in agriculture [Report]. University of Connecticut.

    Google Scholar 

  • Ezawa, T., Yamamoto, K., & Yoshida, S. (2002). Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science and Plant Nutrition, 48(6), 897–900. https://doi.org/10.1080/00380768.2002.10408718

    Article  Google Scholar 

  • Fidel, R. B., Laird, D. A., Thompson, M. L., & Lawrinenko, M. (2017). Characterisation and quantification of biochar alkalinity. Chemosphere, 167, 367–373. https://doi.org/10.1016/j.chemosphere.2016.09.151

    Article  CAS  Google Scholar 

  • Gangil, S., & Wakudkar, H. M. (2013). Generation of bio-char from crop residues. International Journal of Emerging Technology and Advanced Engineering, 3, 566–570.

    Google Scholar 

  • Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633. https://doi.org/10.2134/agronj2009.0083

    Article  CAS  Google Scholar 

  • Haider, F. U., Coulter, J. A., Liqun, C., Hussain, S., Cheema, S. A., Wu, J., & Zhang, R. (2020). An overview on biochar production, its implications, and mechanisms of biocharinduced amelioration of soil and plant characteristics. Pedosphere.

    Google Scholar 

  • Hameed, M. A., Farooqi, Z. U. R., Hussain, M. M., & Ayub, M. A. (2021). PGPR-assisted bioremediation and plant growth: A sustainable approach for crop production using polluted soils. Plant growth regulators: Signalling under stress conditions, 403.

    Google Scholar 

  • Hammes, K., & Schmidt, M. W. (2009). Changes of biochar in soil. Biochar for environmental management. Science and Technology, 1, 169–181.

    Google Scholar 

  • Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., & Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

    Article  CAS  Google Scholar 

  • Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39, 109–143. https://doi.org/10.1016/j.jechem.2019.01.024

    Article  Google Scholar 

  • Hussain, M. M., Bibi, I., Niazi, N. K., Shahid, M., Iqbal, J., Shakoor, M. B., … Zhang, H. (2021). Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 773, 145040. https://doi.org/10.1016/j.scitotenv.2021.145040

    Article  CAS  Google Scholar 

  • Irfan, M., Rafiullah, K., Naz, F., Rizwan, M., & Mehmood, I. (2017). Potential value of biochar as a soil amendment: A review. Pure and Applied Biology, 6(4), 1494–1502. https://doi.org/10.19045/bspab.2017.600161

    Article  CAS  Google Scholar 

  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Joseph, S., & Lehmann, J. (2009). Biochar for environmental management: Science and technology. EarthScan.

    Google Scholar 

  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., & Hook, J. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501–515. https://doi.org/10.1071/SR10009

    Article  CAS  Google Scholar 

  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Murtaza, B., Bibi, I., Natasha, A. N., & M., & Niazi, N. K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711. https://doi.org/10.1016/j.scitotenv.2019.134645, PubMed: 134645.

  • Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge.

    Book  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., & O’Neill, B. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730. https://doi.org/10.2136/sssaj2005.0383

    Article  CAS  Google Scholar 

  • Luo, Z., Luo, Y., Wang, G., Xia, J., & Peng, C. (2020). Warming-induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 26(12), 7242–7254. https://doi.org/10.1111/gcb.15370

    Article  Google Scholar 

  • Major, J., Steiner, C., Ditommaso, A., Falcão, N. P. S., & Lehmann, J. (2005). Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: Compost, fertiliser, manure and charcoal applications. Weed Biology and Management, 5(2), 69–76. https://doi.org/10.1111/j.1445-6664.2005.00159.x

    Article  Google Scholar 

  • Mensah, A. K., & Frimpong, K. A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maise grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018, 1–8. https://doi.org/10.1155/2018/6837404

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193–194, 122–130. https://doi.org/10.1016/j.geoderma.2012.10.002

    Article  CAS  Google Scholar 

  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K., . . . Busscher, W. J. (2009). Characterisation of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science.

    Google Scholar 

  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H.-J. (2015). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology and Innovation, 4, 206–209. https://doi.org/10.1016/j.eti.2015.08.003

    Article  Google Scholar 

  • Parker, S. S., & Schimel, J. P. (2011). Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Applied Soil Ecology, 48(2), 185–192. https://doi.org/10.1016/j.apsoil.2011.03.007

    Article  Google Scholar 

  • Pedersen, C. S. (2018). The UN sustainable development goals (SDGs) are a great gift to business! Procedia CIRP, 69, 21–24. https://doi.org/10.1016/j.procir.2018.01.003

    Article  Google Scholar 

  • Peiris, C., Gunatilake, S. R., Wewalwela, J. J., & Vithanage, M. (2019). Biochar for sustainable agriculture: Nutrient dynamics, soil enzymes, and crop growth. Biochar from biomass and waste (pp. 211–224). Elsevier.

    Google Scholar 

  • Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. Biochar-an imperative amendment for soil and the environment. IntechOpen.

    Google Scholar 

  • Renner, R. (2007). Rethinking biochar. ACS Publications.

    Book  Google Scholar 

  • Rondon, M., Ramirez, A., & Hurtado, M. (2004). Charcoal additions to high fertility ditches enhance yields and quality of cash crops in Andean hillsides of Colombia. CIAT Annual Report Cali.

    Google Scholar 

  • Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708. https://doi.org/10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterisation of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115. https://doi.org/10.1111/gcbb.12018

    Article  CAS  Google Scholar 

  • Saxena, J., Rawat, J., & Kumar, R. (2017). Conversion of biomass waste into biochar and the effect on mung bean crop production. CLEAN - Soil, Air, Water, 45(7). https://doi.org/10.1002/clen.201501020, PubMed: 1501020.

  • Semenov, V. M., Kogut, B. M., Zinyakova, N. B., Masyutenko, N. P., Malyukova, L. S., Lebedeva, T. N., & Tulina, A. S. (2018). Biologically active organic matter in soils of European Russia. Eurasian Soil Science, 51(4), 434–447. https://doi.org/10.1134/S1064229318040117

    Article  Google Scholar 

  • Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., & Chhajro, M. A. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. https://doi.org/10.1016/j.jenvman.2018.09.006

    Article  CAS  Google Scholar 

  • Sherene, T. (2017). Role of soil enzymes in nutrient transformation: A review. Biology Bulletin, 3, 109–131.

    Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. (2010). Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research, 48(7), 546–554. https://doi.org/10.1071/SR10002

    Article  CAS  Google Scholar 

  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053

    Article  CAS  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

    Article  CAS  Google Scholar 

  • Terekhova, V. A., Prudnikova, E. V., Kulachkova, S. A., Gorlenko, M. V., Uchanov, P. V., Sushko, S. V., & Ananyeva, N. D. (2021). Microbiological indicators of heavy metals and carbon-containing preparations applied to Agrosoddy-podzolic soils differing in humus content. Eurasian Soil Science, 54(3), 448–458. https://doi.org/10.1134/S1064229321030157

    Article  CAS  Google Scholar 

  • Thies, J. E., & Rillig, M. C. (2009). Characteristics of biochar: Biological properties. Biochar for environmental management. Science and Technology, 1, 85–105.

    Google Scholar 

  • Tomczyk, A., SokoÅ‚owska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Kimber, S., Downie, A., Morris, S., Petty, S., Rust, J., & Chan, K. Y. (2010). A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Research, 48(7), 569–576. https://doi.org/10.1071/SR10003

    Article  CAS  Google Scholar 

  • Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science and Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487

    Article  CAS  Google Scholar 

  • Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E., & Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45(9), 939–969. https://doi.org/10.1080/10643389.2014.924180

    Article  CAS  Google Scholar 

  • Yadav, A. N., Rastegari, A. A., Yadav, N., & Kour, D. (2020). Advances in plant microbiome and sustainable agriculture. Springer.

    Book  Google Scholar 

  • Yao, Q., Liu, J., Yu, Z., Li, Y., Jin, J., Liu, X., & Wang, G. (2017). Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of Northeast China. Soil Biology and Biochemistry, 110, 56–67. https://doi.org/10.1016/j.soilbio.2017.03.005

    Article  CAS  Google Scholar 

  • Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-Ud-Din, W., … Hussain, M. M. (2021). Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water, 13(2), 215. https://doi.org/10.3390/w13020215

    Article  CAS  Google Scholar 

  • Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., … Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117

    Article  CAS  Google Scholar 

  • Yuan, H., Lu, T., Huang, H., Zhao, D., Kobayashi, N., & Chen, Y. (2015). Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis, 112, 284–289. https://doi.org/10.1016/j.jaap.2015.01.010

    Article  CAS  Google Scholar 

  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  CAS  Google Scholar 

  • Zhang, D., Yan, M., Niu, Y., Liu, X., van Zwieten, L., & Chen, D. (2016). Is current biochar research addressing global soil constraints for sustainable agriculture? Agriculture, Ecosystems and Environment, 226, 25–32. https://doi.org/10.1016/j.agee.2016.04.010

    Article  Google Scholar 

  • Zhu, L. X., Xiao, Q., Shen, Y. F., & Li, S. Q. (2017). Effects of biochar and maise straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China. Environmental Science and Pollution Research International, 24(1), 1019–1029. https://doi.org/10.1007/s11356-016-7829-0

    Article  CAS  Google Scholar 

  • Zhu, L., Lei, H., Zhang, Y., Zhang, X., Bu, Q., & Wei, Y. (2018). A review of biochar derived from pyrolysis and its application in biofuel production. SF Journal of Materials Chemistry Enineering, 1(1), 1007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M.M. et al. (2022). Biochar: A Game Changer for Sustainable Agriculture. In: Bandh, S.A. (eds) Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-83066-3_8

Download citation

Publish with us

Policies and ethics