Skip to main content

Understanding Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Agriculture has seen enormous transformations, particularly after the conclusion of World War II. Agricultural production rose dramatically due to new technology, mechanisation, significant chemical usage and government policies that supported output maximisation. While these modifications have had several beneficial consequences and decreased several dangers in agriculture, they have also incurred enormous expenses in topsoil depletion, groundwater pollution, the collapse of family farms and persistent disregard of living and working conditions. Globally, food and agricultural production systems are confronted with unprecedented problems due to the increased demand for food due to population growth, increased hunger and malnutrition, unfavourable climate change consequences, overexploitation of natural resources, loss of biodiversity and food loss and waste. These obstacles may jeopardise the world’s ability to satisfy its food demands in the present and future. Agriculture must be sustainable if it fulfils the needs of future generations while also assuring profitability, environmental health and social and economic equality. Today, the notion of sustainable agriculture is gaining greater recognition and support within conventional agriculture. Not only does sustainable agriculture solve several environmental and social challenges, it also creates novel and economically feasible options for producers, labourers, consumers and policymakers across the food supply chain. The present chapter will attempt to cover the fundamentals of the idea using the content format provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira, S. (2009). Pathogen recognition by innate immunity and its signaling. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85(4), 143–156. https://doi.org/10.2183/pjab.85.143

    Article  CAS  Google Scholar 

  • Anderson, J. R., & Hazell, P. B. (1989). Variability in grain yields: Implications for agricultural research and policy in developing countries.

    Google Scholar 

  • Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 673–677.

    Google Scholar 

  • Arruda, M. P., Lipka, A. E., Brown, P. J., Krill, A. M., Thurber, C., Brown-Guedira, G., … Kolb, F. L. (2016). Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Molecular Breeding, 36(7), 1–11. https://doi.org/10.1007/s11032-016-0508-5

    Article  CAS  Google Scholar 

  • Avrani, S., Bolotin, E., Katz, S., & Hershberg, R. (2017). Rapid genetic adaptation during the first four months of survival under resource exhaustion. Molecular Biology Evolution, 34(7), 1758–1769. https://doi.org/10.1093/molbev/msx118

    Article  CAS  Google Scholar 

  • Bardin, S. D., Huang, H. C., Pinto, J., Amundsen, E. J., & Erickson, R. S. (2004a). Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Canadian Journal of Botany, 82(3), 291–296. https://doi.org/10.1139/b04-003

    Article  Google Scholar 

  • Bardin, S. D., Huang, H. C., & Moyer, J. R. (2004b). Control of Pythium damping-off of sugar beet by seed treatment with crop straw powders and a biocontrol agent. Biological Control, 29(3), 453–460.

    Google Scholar 

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4(Suppl.)), 1044–1051. https://doi.org/10.1590/s1415-47572012000600020

    Article  CAS  Google Scholar 

  • Bodek, I. (1988). Environmental inorganic chemistry. Pergamon Press.

    Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346

    Article  CAS  Google Scholar 

  • Cao, Y., Halane, M. K., Gassmann, W., & Stacey, G. (2017). The role of plant innate immunity in the legume-rhizobium symbiosis. Annual Review of Plant Biology, 68, 535–561. https://doi.org/10.1146/annurev-arplant-042916-041030

    Article  CAS  Google Scholar 

  • Carson, K. C., Meyer, J., & Dilworth, M. J. (2000). Hydroxamate siderophores of root nodule bacteria. Soil Biology and Biochemistry, 32(1), 11–21. https://doi.org/10.1016/S0038-0717(99)00107-8

    Article  CAS  Google Scholar 

  • Cetin, Ă–. (2004). Role of the micro irrigation on sustainability of soil and water resources. Proceedings of the International Soil Congress on Natural Resource Management for Sustainable Development, E 57–65, Erzurum, Turkey.

    Google Scholar 

  • Chakraborty, B. N., & Purkayastha, R. P. (1987). Alteration in glyceollin synthesis and antigenic patterns after chemical induction of resistance in soybean to Macrophomina phaseolina. Canadian Journal of Microbiology, 33(10), 835–840.

    Google Scholar 

  • Chandra, S., Choure, K., Dubey, R. C., & Maheshwari, D. K. (2007). Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian Journal of Microbiology, 38(1), 124–130. https://doi.org/10.1590/S1517-83822007000100026

    Article  Google Scholar 

  • Crosson, P. 1992. “Sustainable Agriculture”, Resources, 106, 14–17

    Google Scholar 

  • Deshwal, V. K., Dubey, R. C., & Maheshwari, D. K. (2003). Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Current Science, 443–448.

    Google Scholar 

  • Di Caracalla, V. D. T. (1997). Codex Alimentarius Commission: Procedural Manual.

    Google Scholar 

  • Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1(4), 316–323. https://doi.org/10.1016/1369-5266(88)80053-0

    Article  CAS  Google Scholar 

  • Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61(3), 377–392. https://doi.org/10.1128/mmbr.61.3.377-392.1997

    Article  CAS  Google Scholar 

  • Fernandez-Göbel, T. F., Deanna, R., Muñoz, N. B., Robert, G., Asurmendi, S., & Lascano, R. (2019). Redox systemic signaling and induced tolerance responses during soybean–Bradyrhizobium japonicum interaction: Involvement of nod factor receptor and autoregulation of nodulation. Frontiers in Plant Science, 10, 141. https://doi.org/10.3389/fpls.2019.00141

    Article  Google Scholar 

  • Figueredo, M. S., Tonelli, M. L., Ibáñez, F., Morla, F., Cerioni, G., del Carmen Tordable, M., & Fabra, A. (2017). Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiological Research, 197, 65–73. https://doi.org/10.1016/j.micres.2017.01.002

    Article  CAS  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117. https://doi.org/10.1139/m95-015

    Article  CAS  Google Scholar 

  • Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: Challenges and opportunities. 3. Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  Google Scholar 

  • Grace, T. (1990). Misperceptions Cloud Students’ Opinions of Agricultural Careers. Choices, 5(316-2016-7334).

    Google Scholar 

  • Gupta, S., Kaushal, R., & Sood, G. (2018). Impact of plant growth–promoting rhizobacteria on vegetable crop production. International Journal of Vegetable Science, 24(3), 289–300. https://doi.org/10.1080/19315260.2017.1407984

    Article  Google Scholar 

  • Hirsch, P. R., Van Montagu, M., Johnston, A. W. B., Brewin, N. J., & Schell, J. (1980). Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarm. Microbiology, 120(2), 403–412.

    Google Scholar 

  • Hla, A. K., & Scherer, T. F. (2003). Introduction to micro-irrigation.

    Google Scholar 

  • Kloepper, J. W., Lifshitz, R., & Schroth, M. N. (1988). Pseudomonas inoculants to benefit plant production. ISI Atlas of Science: Animal and Plant Sciences, 1(1), 60–64.

    Google Scholar 

  • Kratsch, H. A., & Wise, R. R. (2000). The ultrastructure of chilling stress. Plant, Cell and Environment, 23(4), 337–350. https://doi.org/10.1046/j.1365-3040.2000.00560.x

    Article  CAS  Google Scholar 

  • Lal, R., Reicosky, D. C., & Hanson, J. D. (2007). Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil and Tillage Research, 93(1), 1–12. https://doi.org/10.1016/j.still.2006.11.004

    Article  Google Scholar 

  • Lockeretz, W. (1988). Open questions in sustainable agriculture. American Journal of Alternative Agriculture, 3(4), 174–181. https://doi.org/10.1017/S0889189300002460

    Article  Google Scholar 

  • Madramootoo, C. A., & Rigby, M. (1991). Effects of trickle irrigation on the growth and sunscald of bell peppers (Capsicum annuum L.) in southern Quebec. Agricultural Water Management, 19(2), 181–189. https://doi.org/10.1016/0378-3774(91)90007-6

    Article  Google Scholar 

  • Maheswari. (2017). Enhancing tolerance to climatic stresses in rainfed crops: The road ahead. In V. V. Belavadi, K. N. Nataraja, & N. R. Gangadharappa (Eds.), Agriculture under climate change: Threats, strategies and policies (pp. 105–111). Allied Publishers. ISBN: 978–93–85926-37-2.

    Google Scholar 

  • Maheswari, M., Tekula, V. L., Yellisetty, V., Sarkar, B., Yadav, S. K., Singh, J., … Maddi, V. (2016). Functional mechanisms of drought tolerance in maise through phenotyping and genotyping under well watered and water stressed conditions. European Journal of Agronomy, 79, 43–57. https://doi.org/10.1016/j.eja.2016.05.008

    Article  Google Scholar 

  • Maheswari, M., Yadav, S. K., Shanker, A. K., Kumar, M. A., & Venkateswarlu, B. (2012). Overview of plant stresses: Mechanisms, adaptations and research pursuit. In Crop stress and its management: Perspectives and strategies (pp. 1–18). Springer.rdrecht.

    Google Scholar 

  • Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132

    Article  CAS  Google Scholar 

  • Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soil-borne diseases. Antonie van Leeuwenhoek, 81(1), 557–564.

    Article  CAS  Google Scholar 

  • McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

    Google Scholar 

  • McDermott, P. F., Walker, R. D., & White, D. G. (2003). Antimicrobials: Modes of action and mechanisms of resistance. International Journal of Toxicology, 22(2), 135–143. https://doi.org/10.1080/10915810305089

    Article  CAS  Google Scholar 

  • Mehra, S. (1981). Instability in Indian agriculture in the context of the new technology, 25. International Food Policy Research Institute.

    Google Scholar 

  • Mishra, A. K., Sharma, K., & Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 7(2), 95–120. https://doi.org/10.1080/17429145.2011.597517

    Article  Google Scholar 

  • MĂĽller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2016). The plant microbiota: Systems-level insights and perspectives. Annual Review of Genetics, 50, 211–234. https://doi.org/10.1146/annurev-genet-120215-034952

    Article  CAS  Google Scholar 

  • Munees, A., & Mulugeta,K. (2014). Mechanisms of application of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University Science, 26(1), 1–20..

    Google Scholar 

  • Nguyen, C. (2009). Rhizodeposition of organic C by plant: Mechanisms and controls. Journal of Sustainable Agriculture, 97–123.

    Google Scholar 

  • O'Brien, S., Hodgson, D. J., & Buckling, A. (2014). Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proceedings of the Royal Society of London. Series B, 281(1787) PubMed: 20140858.

    Google Scholar 

  • Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., & Thonart, P. (2005). Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 67(5), 692–698. https://doi.org/10.1007/s00253-004-1741-0

    Article  CAS  Google Scholar 

  • Patil, G., Mian, R., Vuong, T. et al. (2017). Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theoretical and Applied Genetics, 130, 1975–1991. https://doi.org/10.1007/s00122-017-2955-8

  • PeignĂ©, J., Ball, B. C., Roger-Estrade, J., & David, C. J. S. U. (2007). Is conservation tillage suitable for organic farming? A review. Soil Use and Management, 23(2), 129–144. https://doi.org/10.1111/j.1475-2743.2006.00082.x

    Article  Google Scholar 

  • Perrin, D. R., & Bottomley, W. (1962). Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. Journal of the American Chemical Society, 84(10), 1919–1922. https://doi.org/10.1021/ja00869a030

    Article  CAS  Google Scholar 

  • Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture advances in agriculture.

    Google Scholar 

  • Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  Google Scholar 

  • Postel, S. L. (2000). Entering an era of water scarcity: The challenges ahead. Ecological Applications, 10(4), 941–948. https://doi.org/10.1890/1051-0761(2000)010[0941:EAEOWS]2.0.CO;2

    Article  Google Scholar 

  • Rey, T., Nars, A., Bonhomme, M., Bottin, A., Huguet, S., Balzergue, S., ... & Jacquet, C. (2013).NFP, a L ys M protein controlling N od f actor perception, also intervenes in M edicago truncatularesistance to pathogens. New Phytologist, 198(3), 875–886.

    Google Scholar 

  • Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A., & Wood, C. (2009). Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9(6), 1212–1221. https://doi.org/10.1016/j.ecolind.2009.02.009

    Article  CAS  Google Scholar 

  • Rosier, A., Medeiros, F. H. V., & Bais, H. P. (2018). Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant and Soil, 428(1–2), 35–55. https://doi.org/10.1007/s11104-018-3679-5

    Article  CAS  Google Scholar 

  • Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research International, 23(5), 3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    Article  CAS  Google Scholar 

  • Saijo, Y., Loo, E. P. I., & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal: For Cell and Molecular Biology, 93(4), 592–613. https://doi.org/10.1111/tpj.13808

    Article  CAS  Google Scholar 

  • Salto, H., Watanabe, T., & Tomloka, H. (1979). Purification, properties and cytotoxic effect of a bacteriocin from Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy,15, 504–509.

    Google Scholar 

  • Scheidle, H., Gross, A., & Niehaus, K. (2005). The lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytologist, 165(2), 559–565. https://doi.org/10.1111/j.1469-8137.2004.01214.x

    Article  CAS  Google Scholar 

  • Schwinghamer, E. A., Pankhurst, C. E., & Whitfeld, P. R. (1973). A Phage-like bacteriocin of Rhizobium trifolii. Canadian Journal of Microbiology, 19(3), 359–368. https://doi.org/10.1139/m73-059

    Article  CAS  Google Scholar 

  • Secretariat, C. G. I. A. R., & CGIAR Technical Advisory Committee. (1988). Review processes in the CGIAR.

    Google Scholar 

  • Shah, T. (2011). Past, present and the future of canal irrigation in India (pp. 70–87). India infrastructure report.

    Google Scholar 

  • Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., & Venkateswarlu, B. (2014). Drought stress responses in crops. Functional and Integrative Genomics, 14(1), 11–22. https://doi.org/10.1007/s10142-013-0356-x

    Article  CAS  Google Scholar 

  • Siddiqui, I. A., Ehteshamul-Haque, S., Zaki, M. J., et al. (2000). Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad Journal of Agriculture, 16, 403–406.

    Google Scholar 

  • Singh, I. J. (1998). Farm poverty, household food security and agricultural sustainability in India. Journal of Rural Development-Hyderabad, 17, 619–632.

    Google Scholar 

  • Six, J., Elliott, E. T., Paustian, K., Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367–1377.

    Google Scholar 

  • Smigielski, L., Laubach, E. M., Pesch, L., Glock, J. M. L., Albrecht, F., Slusarenko, A., … Kuhn, H. (2019). Nodulation induces systemic resistance of Medicago truncatula and Pisum sativum against Erysiphe pisi and primes for powdery mildew-triggered salicylic acid accumulation. Molecular Plant–Microbe Interactions, 32(9), 1243–1255. https://doi.org/10.1094/MPMI-11-18-0304-R

    Article  CAS  Google Scholar 

  • Srinivasan, T. (2017). Studies on antifungal activity of siderophores produced by rhizobium spp. isolated from groundnut (Arachis hypogaea). Journal of Agricultural Science and Food Research, 8(4), 1–2.

    Google Scholar 

  • Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40(3), 722–756. https://doi.org/10.1128/br.40.3.722-756.1976

    Article  CAS  Google Scholar 

  • TebrĂĽgge, F., & DĂĽring, R.-A. (1999). Reducing tillage intensity—A review of results from a long-term study in Germany. Soil and Tillage Research, 53(1), 15–28. https://doi.org/10.1016/S0167-1987(99)00073-2

    Article  Google Scholar 

  • Tonelli, M. L., Figueredo, M. S., RodrĂ­guez, J., Fabra, A., & Ibañez, F. (2020). Induced systemic resistance-like responses elicited by rhizobia. Plant and Soil, 448(1–2), 1–14. https://doi.org/10.1007/s11104-020-04423-5

    Article  CAS  Google Scholar 

  • Travin, D. Y., Watson, Z. L., Metelev, M., Ward, F. R., Osterman, I. A., Khven, I. M., … Severinov, K. (2019). Structure of ribosome-bound azole-modified peptide phazolicin rationalises its species-specific mode of bacterial translation inhibition. Nature Communications, 10(1), 1.

    Article  CAS  Google Scholar 

  • Triplett, E. W., & Barta, T. M. (1987). Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. trifolii strain T24 on clover. Plant Physiology, 85(2), 335–342. https://doi.org/10.1104/pp.85.2.335

    Article  CAS  Google Scholar 

  • USDA Study Team on Organic Agriculture. (1980). Report and Recommendations on Organic Farming. US Department of Agriculture, Washington, DC. Available at Website http://www.nal.usda.gov/afsic/pubs/USDAOrgFarmRpt.pdf (verified December 20, 2012)

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36(1), 453–483. https://doi.org/10.1146/annurev.phyto.36.1.453

    Article  Google Scholar 

  • Varma, S., Verma, S., & Namara, R. E. (2006). Promoting micro irrigation technologies that reduce poverty. Water Policy Briefing, 23.

    Google Scholar 

  • Vasileiadis, V. P., Froud-Williams, R. J., & Eleftherohorinos, I. G. (2007). Vertical distribution, size and composition of the weed seedbank under various tillage and herbicide treatments in a sequence of industrial crops. Weed Research, 47(3), 222–230. https://doi.org/10.1111/j.1365-3180.2007.00564.x

    Article  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  Google Scholar 

  • Wiener, P. (1996). Experimental studies on the ecological role of antibiotic production in bacteria. Evolutionary Ecology, 10(4), 405–421.

    Google Scholar 

  • World Health Organization. (2003). Diet, nutrition, and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation, 916. World Health Organization.

    Google Scholar 

  • Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M., & Berendsen, R. L. (2019). Beneficial microbes going underground of root immunity. Plant, Cell and Environment, 42(10), 2860–2870. https://doi.org/10.1111/pce.13632

    Article  CAS  Google Scholar 

  • Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant–Microbe Interactions, 25(2), 139–150. https://doi.org/10.1094/MPMI-06-11-0179

    Article  CAS  Google Scholar 

  • Zhang, D. W., Deng, X. G., Fu, F. Q., Lin, H. H. (2015). Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta, 241, 875–885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, N.F., Rehman, S. (2022). Understanding Sustainable Agriculture. In: Bandh, S.A. (eds) Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-83066-3_1

Download citation

Publish with us

Policies and ethics