Skip to main content

Introductory Remarks

  • Chapter
  • First Online:
Inverse Magnetometry

Abstract

The introductory remarks in this chapter are concerned with geomathematically oriented aspects of the history and the methodology of Earth’s magnetic field obligations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blakely, R.J.: Potential Theory in Gravity and Magnetic Application. Cambridge University, Cambridge (1996)

    Google Scholar 

  2. Blick, C.: Multi-scale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion, Ph.-D. thesis. University of Kaiserslautern, Geomathematics Group, Kaiserslautern (2015)

    Google Scholar 

  3. Bosch, M., McGaughey, J.: Joint inversion of gravity and magnetic data under lithologic constraints. Leading Edge 20, 877–881 (2001)

    Article  Google Scholar 

  4. Bossavit, A.: Computational Eloctromagnetism. Academic Press, San Diego (1998)

    Google Scholar 

  5. Davis, K., Li, Y., Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression. Geophys. J. Int. 185, 157–166 (2011)

    Article  Google Scholar 

  6. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publisher, Dordrecht (1996)

    Book  Google Scholar 

  7. Eskola, L.: Geophysical Interpretation Using Integral Equations. Chapman and Hall, London (1992)

    Book  Google Scholar 

  8. Farquharson, C.G., Oldenburg, D.W., Non-linear inversion using general measures of data misfit and model structure. Geophys. J. Int. 134, 213–227 (1998)

    Article  Google Scholar 

  9. Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected Physical Geodesy, Ph.-D. thesis. University of Kaiserslautern, Geomathematics Group, Kaiserslautern (2009)

    Google Scholar 

  10. Freeden, W.: Geomathematik, was ist das überhaupt? Jahresber. Deutsch. Math. Vereinigung (DMV) 111, 125–152 (2009)

    MATH  Google Scholar 

  11. Freeden, W.: Geomathematics: Its Role, its Aim, and its Potential. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn., vol. 1, pp. 3–78 Springer, New York (2015)

    Google Scholar 

  12. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65, 304–317 (2013)

    Google Scholar 

  13. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press/Taylor and Francis, Boca Raton (2013)

    MATH  Google Scholar 

  14. Freeden, W., Nashed, M.Z.: Ill-posed problems: operator methodologies of resolution and regularization approaches. In: Freeden, W. and Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer/Birkhäuser, Basel/New York (2018a)

    Chapter  Google Scholar 

  15. Freeden, W., Nashed, M.Z.: Inverse gravimetry: background material and multiscale mollifier approaches. GEM Int. J. Geomath. 9, 199–264 (2018c)

    Article  MathSciNet  Google Scholar 

  16. Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. 9, 1–115 (2018d)

    Article  MathSciNet  Google Scholar 

  17. Freeden, W., Nashed, M.Z.: Inverse gravimetry: density signatures from gravitational potential data. In: Freeden, W., Rummel, R. (eds.) Handbuch der Geodäsie, Mathematische Geodäsie/Mathematical Geodesy, pp. 969–1052. Springer Spektrum, Heidelberg (2020)

    Chapter  Google Scholar 

  18. Freeden, W., Schreiner, M.: Local multiscale modeling of geoid undulations from deflections of the vertical. J. Geodesy 79, 641–651 (2006)

    Article  Google Scholar 

  19. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial setup. 1st edn., Springer, Heidelberg (2009)

    Book  Google Scholar 

  20. Freeden, W., Schreiner, M.: Mathematical Geodesy: Its role, its aim, and its potential. In: Freeden, W., Rummel, R. (eds.) Handbuch der Geodäsie, Mathematische Geodäsie/Mathematical Geodesy, pp. 3–64. Springer Spektrum, Heidelberg (2020)

    Chapter  Google Scholar 

  21. Freeden, W., Nashed, M.Z. (eds.): Handbook of Mathematical Geodesy. Geosystems Mathematics, Springer/Birkhäuser, New York (2018)

    MATH  Google Scholar 

  22. Freeden, W., Heine, C., Nashed M.Z.: An Invitation to Geomathematics. Lecture Notes in Geosystem Mathematics and Computing (2019)

    Google Scholar 

  23. Lelièvre, P.G.: Integrating geologic and geophysical data through advanced constrained inversions, Ph.-D. thesis. The University of British Columbia, Vancouver (2009)

    Google Scholar 

  24. Lelièvre, P.G., Farquharson, C.G.: Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes. Geophys. J. Int. 195, 330–341 (2013)

    Article  Google Scholar 

  25. Lelièvre, P.G., Oldenburg, D.W.: Magnetic forward modeling and inversion for high susceptibility. Geophys. J. Int. 166, 79–90 (2006)

    Article  Google Scholar 

  26. Lima, E.A., Irimia, A., Wikswo, J.P.: The magnetic inverse problem. In: Clarke, J., and Braginski, A.E. (eds.) The SQUID Handbook, vol. II. WILEY-VCH, Weinheim (2006)

    Google Scholar 

  27. Louis, A.K., Maass, P.: A mollifier method for linear equations of the first kind. Inverse Prob. 6, 427–440 (1990)

    Article  MathSciNet  Google Scholar 

  28. Lukyanenko, D., Yagola, A.: Some methods for solving of 3D inverse problem of magnetometry. Eurasian J. Math. Comput. Appl. 4, 4–14 (2016)

    Google Scholar 

  29. Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  30. Möhringer, S.: Decorrelation of gravimetric data, Ph.-D. thesis. University of Kaiserslautern, Geomathematics Group, Kaiserslautern (2014)

    Google Scholar 

  31. Nashed, M.Z.: Generalized inverses, normal solvability and iteration for singular operator equations. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 311–359. Academic Press, New York (1971)

    Chapter  Google Scholar 

  32. Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antennas Propag. 29, 220–231 (1981)

    Article  MathSciNet  Google Scholar 

  33. Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations, inverse and ill-posed problems. In: Engl, H.W. and Groetsch, C.W. (eds.) Notes and Reports in Mathematics in Science and Engineering, vol. 4. Academic Press, New York (1987)

    Google Scholar 

  34. Nashed, M.Z.: In: Siddiqi, A.H., Singh, R.C. Manchanda, P. (eds.) Inverse problems, moment problems, and signal processing: Un Menage a Trois. Mathematics in science and technology, pp. 1–19. World Scientific, New Jersey (2010)

    Google Scholar 

  35. Nashed, M.Z., Scherzer, O.: Inverse Problems, Image Analysis and Medical Imaging (Contemporary Mathematics), vol. 313. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  36. Strakhov, V.N.: Solution of linear inverse problems of gravimetry and magnetometry. Dokl. Akad. Nauk SSSR 310, 1358–1362 (1990)

    MathSciNet  Google Scholar 

  37. Wikswo J.P.: The magnetic inverse problem for NDE. In: Weinstock, H. (ed.) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series (Series E: Applied Sciences), vol. 329. Springer, Dordrecht (1996)

    Google Scholar 

  38. Wikswo J.P., Ma, Y.P., Sepulveda, N.G., Tan S. Thomas I.M., Lauder, A.: Magnetic susceptibility imaging for nondestructive evaluation (using SQUID magnetometer). IEEE Trans. Appl. Supercond. 3(1), 1995–2002 (2002)

    Google Scholar 

  39. Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets, Ph.-D. thesis. University of Kaiserslautern, Geomathematics Group, Kaiserslautern (2009)

    Google Scholar 

  40. Zidarov, D.P.: Conditions for Uniqueness of Self-Limiting Solutions of the Inverse Problems. Comptes rendus de l’Académie bulgare des Sci. 39, 57–60 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blick, C., Freeden, W., Nashed, M.Z., Nutz, H., Schreiner, M. (2021). Introductory Remarks. In: Inverse Magnetometry. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-79508-5_1

Download citation

Publish with us

Policies and ethics