Skip to main content

Abstract

Robotic flexible endoscopes have been engineered to overcome the limitations of current flexible endoscopes in order to improve diagnostic accuracy and to enhance therapeutic capabilities, thereby increasing proficiency, dexterity, precision, and ergonomics. The introduction of biorobotics and computer assistance into the clinical practice will transform diagnostic endoscopy for both physicians and patients, facilitating the standardization of clinical practice and access to procedures. Robotic platforms will also transform therapeutic endoscopy democratizing complex interventions, bringing surgical performance and proficiency within the lumen of the gastrointestinal tract with the promise of novel scarless organ-sparing therapies.

This chapter describes the most relevant and latest advances in endoscopic robotic systems in both diagnostic and therapeutic fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomiki Y, Kawai M, Kawano S, et al. Endoscopic submucosal dissection decreases additional colorectal resection for T1 colorectal cancer. Med Sci Monit. 2018;24:6910–7. https://doi.org/10.12659/MSM.909380.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ciuti G, Skonieczna-Żydecka K, Marlicz W, et al. Frontiers of robotic colonoscopy: a comprehensive review of robotic Colonoscopes and technologies. J Clin Med. 2020;9:1648. https://doi.org/10.3390/jcm9061648.

    Article  PubMed Central  Google Scholar 

  3. Rey JF, Ogata H, Hosoe N, et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy. 2010;42:541–5. https://doi.org/10.1055/s-0030-1255521.

    Article  CAS  PubMed  Google Scholar 

  4. Verra M, Firrincieli A, Chiurazzi M, et al. Robotic-assisted colonoscopy platform with a magnetically-actuated soft-tethered capsule. Cancers (Basel). 2020;12:1–15. https://doi.org/10.3390/cancers12092485.

    Article  Google Scholar 

  5. Rembacken BJ, Gotoda T, Fujii T, Axon AT. Endoscopic Mucosal Resection. Endoscopy. 2001;33:709–18. https://doi.org/10.1055/s-2001-16224.

    Article  CAS  PubMed  Google Scholar 

  6. Probst A, Ebigbo A, Märkl B, et al. Endoscopic submucosal dissection for early rectal neoplasia: experience from a European center. Endoscopy. 2017;49:222–32. https://doi.org/10.1055/s-0042-118449.

    Article  PubMed  Google Scholar 

  7. Vucelic B, Rex D, Pulanic R, et al. The Aer-O-scope: proof of concept of a pneumatic, skill-independent, self-propelling, self-navigating colonoscope. Gastroenterology. 2006;130:672–7. https://doi.org/10.1053/j.gastro.2005.12.018.

    Article  PubMed  Google Scholar 

  8. García-Figueiras R, Baleato-González S, Padhani AR, et al. Advanced imaging techniques in evaluation of colorectal cancer. Radiographics. 2018;38:740–65. https://doi.org/10.1148/rg.2018170044.

    Article  PubMed  Google Scholar 

  9. Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology. 2019;156:1661–1674.e11. https://doi.org/10.1053/j.gastro.2019.01.260.

    Article  PubMed  Google Scholar 

  10. Rex DK. A self-propelled colonoscope: Aer-O-Scope. Curr Colorectal Cancer Rep. 2008;4:10–3. https://doi.org/10.1007/s11888-008-0003-4.

    Article  Google Scholar 

  11. Boškoski I, Costamagna G. Endoscopy robotics: current and future applications. Dig Endosc. 2019;31:119–24. https://doi.org/10.1111/den.13270.

    Article  PubMed  Google Scholar 

  12. Shike M, Fireman Z, Eliakim R, et al. Sightline Colono sight system for a disposable, power-assisted, non-fiber-optic colonoscopy (with video). Gastrointest Endosc. 2008;68:701–10. https://doi.org/10.1016/j.gie.2007.12.062.

    Article  PubMed  Google Scholar 

  13. Cosentino F, Tumino E, Passoni GR, et al. Functional evaluation of the Endotics system, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial. Int J Artif Organs. 2009;32:517–27. https://doi.org/10.1177/039139880903200806.

    Article  PubMed  Google Scholar 

  14. Tumino E, Parisi G, Bertoni M, et al. Use of robotic colonoscopy in patients with previous incomplete colonoscopy. Eur Rev Med Pharmacol Sci. 2017;21:819–26.

    CAS  PubMed  Google Scholar 

  15. Trecca A, Catalano F, Bella A, Borghini R. Robotic colonoscopy: efficacy, tolerability and safety. Preliminary clinical results from a pilot study. Surg Endosc. 2020;34:1442–50. https://doi.org/10.1007/s00464-019-07332-6.

    Article  PubMed  Google Scholar 

  16. Patel N, Darzi A, Teare J. The endoscopy evolution: ‘the superscope era.’. Frontline Gastroenterol. 2015;6:101–7. https://doi.org/10.1136/flgastro-2014-100448.

    Article  PubMed  Google Scholar 

  17. Yeung CK, Cheung JLK, Sreedhar B. Emerging next-generation robotic colonoscopy systems towards painless colonoscopy. J Dig Dis. 2019;20:196–205. https://doi.org/10.1111/1751-2980.12718.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gluck N, Melhem A, Halpern Z, et al. A novel self-propelled disposable colonoscope is effective for colonoscopy in humans (with video). Gastrointest Endosc 83:998-1004.e1. 2016; https://doi.org/10.1016/j.gie.2015.08.083.

  19. Eickhoff A, Van Dam J, Jakobs R, et al. Computer-assisted colonoscopy (the neo guide endoscopy system): results of the first human clinical trial (“PACE study”). Am J Gastroenterol. 2007;102:261–6. https://doi.org/10.1111/j.1572-0241.2006.01002.x.

    Article  PubMed  Google Scholar 

  20. Rösch T, Adler A, Pohl H, et al. A motor-driven single-use colonoscope controlled with a hand-held device: a feasibility study in volunteers. Gastrointest Endosc. 2008;67:1139–46. https://doi.org/10.1016/j.gie.2007.10.065.

    Article  PubMed  Google Scholar 

  21. Li Z, Chiu PWY. Robotic Endoscopy. Visc Med. 2018;34:45–51. https://doi.org/10.1159/000486121.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khandalavala K, Shimon T, Flores L, et al. Emerging surgical robotic technology: a progression toward microbots. Ann Laparosc Endosc Surg. 2020;5:3–3. https://doi.org/10.21037/ales.2019.10.02.

    Article  Google Scholar 

  23. Groth S, Rex DK, Rösch T, Hoepffner N. High cecal intubation rates with a new computer-assisted colonoscope: a feasibility study. Am J Gastroenterol. 2011;106:1075–80. https://doi.org/10.1038/ajg.2011.52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nakamura T, Terano A. Capsule endoscopy: past, present, and future. J Gastroenterol. 2008;43:93–9. https://doi.org/10.1007/s00535-007-2153-6.

    Article  PubMed  Google Scholar 

  25. Taddese AZ, Slawinski PR, Obstein KL, Valdastri P. Closed loop control of a tethered magnetic capsule endoscope. Robot Sci Syst. 2016:12. https://doi.org/10.15607/rss.2016.xii.018.

  26. Chen PJ, Lin MC, Lai MJ, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology. 2018;154:568–75. https://doi.org/10.1053/j.gastro.2017.10.010.

    Article  PubMed  Google Scholar 

  27. Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100. https://doi.org/10.1136/gutjnl-2017-314547.

    Article  PubMed  Google Scholar 

  28. Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68:1813–9. https://doi.org/10.1136/gutjnl-2018-317500.

    Article  PubMed  Google Scholar 

  29. Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology. 2020;159:512–520.e7. https://doi.org/10.1053/j.gastro.2020.04.062.

    Article  PubMed  Google Scholar 

  30. Hassan C, Wallace MB, Sharma P, et al. New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection. Gut. 2020;69:799–800. https://doi.org/10.1136/gutjnl-2019-319914.

    Article  PubMed  Google Scholar 

  31. Hassan AR, Haque MA. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Elsevier Ireland Ltd; 2015.

    Book  Google Scholar 

  32. Wang S, Xing Y, Zhang L, et al. A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks. Phys Med Biol. 2019;64:235014. https://doi.org/10.1088/1361-6560/ab5086.

    Article  PubMed  Google Scholar 

  33. Iwahori Y, Hattori A, Adachi Y, et al. Automatic detection of polyp using hessian filter and HOG features. Procedia Comput Sci. 2015;60:730–9. https://doi.org/10.1016/j.procs.2015.08.226.

    Article  Google Scholar 

  34. Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng. 2011;58:2777–86. https://doi.org/10.1109/TBME.2011.2155064.

    Article  PubMed  Google Scholar 

  35. Nakadate R, Arata J, Hashizume M. Next-generation robotic surgery - from the aspect of surgical robots developed by industry. Minim Invasive Ther Allied Technol. 2015;24:2–7. https://doi.org/10.3109/13645706.2014.1003140.

    Article  PubMed  Google Scholar 

  36. Bardaro SJ, Swanström L. Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES). Minim Invasive Ther Allied Technol. 2006;15:378–83. https://doi.org/10.1080/13645700601038069.

    Article  PubMed  Google Scholar 

  37. Thompson CC, Ryou M, Soper NJ, et al. Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications (with video). Gastrointest Endosc. 2009;70:121–5. https://doi.org/10.1016/j.gie.2008.11.007.

    Article  PubMed  Google Scholar 

  38. Yasuda K, Kitano S, Ikeda K, et al. Assessment of a manipulator device for NOTES with basic surgical skill tests: a bench study. Surg Laparosc Endosc Percutaneous Tech. 2014;24:e191–5. https://doi.org/10.1097/SLE.0b013e31828fa24a.

    Article  Google Scholar 

  39. Fuchs KH, Breithaupt W. Transgastric small bowel resection with the new multitasking platform Endo SAMURAI™ for natural orifice transluminal endoscopic surgery. Surg Endosc. 2012;26:2281–7. https://doi.org/10.1007/s00464-012-2173-z.

    Article  PubMed  Google Scholar 

  40. De Donno A, Zorn L, Zanne P, et al. Introducing STRAS: a new flexible robotic system for minimally invasive surgery. Proc-IEEE Int Conf Robot Autom. 2013:1213–20. https://doi.org/10.1109/ICRA.2013.6630726.

  41. Mascagni P, Lim SG, Fiorillo C, et al. Democratizing endoscopic submucosal dissection: single-operator fully robotic colorectal endoscopic submucosal dissection in a pig model. Gastroenterology. 2019;156:1569–1571.e2. https://doi.org/10.1053/j.gastro.2018.12.046.

    Article  PubMed  Google Scholar 

  42. Zorn L, Nageotte F, Zanne P, et al. A novel Telemanipulated robotic assistant for surgical endoscopy: preclinical application to ESD. IEEE Trans Biomed Eng. 2018;65:797–808. https://doi.org/10.1109/TBME.2017.2720739.

    Article  PubMed  Google Scholar 

  43. Wang Z, Phee SJ, Lomanto D, et al. Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy. 2012;44:690–4. https://doi.org/10.1055/s-0032-1309404.

    Article  CAS  PubMed  Google Scholar 

  44. Chiu PWY, Phee SJ, Wang Z, et al. Feasibility of full-thickness gastric resection using master and slave transluminal endoscopic robot and closure by overstitch: a preclinical study. Surg Endosc. 2014;28:319–24. https://doi.org/10.1007/s00464-013-3149-3.

    Article  PubMed  Google Scholar 

  45. Takeshita N, Ho KY, Phee SJ, et al. Feasibility of performing esophageal endoscopic submucosal dissection using master and slave transluminal endoscopic robot. Endoscopy. 2017;49:E27–8. https://doi.org/10.1055/s-0042-121486.

    Article  PubMed  Google Scholar 

  46. Chiu PWYW, Phee SJ, Ho K-Y. Tu2016 colonic endoscopic submucosal dissecion using ease robotic system-a preclinical study. Gastrointest Endosc. 2019;89:AB658–9. https://doi.org/10.1016/j.gie.2019.03.1160.

    Article  Google Scholar 

  47. Phee SJ, Ho KY, Lomanto D, et al. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc. 2010;24:2293–8. https://doi.org/10.1007/s00464-010-0955-8.

    Article  CAS  PubMed  Google Scholar 

  48. Kaan H, Ho K. Endoscopic robotic suturing: the way forward. Saudi J Gastroenterol. 2019;25:272. https://doi.org/10.4103/sjg.SJG_12_19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carmichael H, D’Andrea AP, Skancke M, et al. Feasibility of transanal total mesorectal excision (taTME) using the Medrobotics flex® system. Surg Endosc. 2020;34:485–91. https://doi.org/10.1007/s00464-019-07019-y.

    Article  PubMed  Google Scholar 

  50. Persky MJ, Issa M, Bonfili JR, et al. Transoral surgery using the flex robotic system: initial experience in the United States. Head Neck. 2018;40:2482–6. https://doi.org/10.1002/hed.25375.

    Article  PubMed  Google Scholar 

  51. Turiani Hourneaux de Moura D, Aihara H, Jirapinyo P, et al. Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video). Gastrointest Endosc. 2019;90:290–8. https://doi.org/10.1016/j.gie.2019.03.016.

    Article  PubMed  Google Scholar 

  52. Paull JO, Graham A, Parascandola SA, et al. The outcomes of two robotic platforms performing transanal minimally invasive surgery for rectal neoplasia: a case series of 21 patients. J Robot Surg. 2020;14:573–8. https://doi.org/10.1007/s11701-019-01021-1.

    Article  PubMed  Google Scholar 

  53. de Moura DTH, Aihara H, Thompson CC. Robotic-assisted surgical endoscopy: a new era for endoluminal therapies. Video GIE. 2019;4:399–402. https://doi.org/10.1016/j.vgie.2019.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grecco E.A prospective investigation of the ColubrisMX ELS System. https://clinicaltrials.gov/ct2/show/NCT04192565. Accessed 1 Nov 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Rita Rodríguez-Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Luna, M.R., Pizzicannella, M., Perretta, S. (2021). Robotic Flexible Endoscopes. In: Horgan, S., Fuchs, KH. (eds) Innovative Endoscopic and Surgical Technology in the GI Tract . Springer, Cham. https://doi.org/10.1007/978-3-030-78217-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78217-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78216-0

  • Online ISBN: 978-3-030-78217-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics