Skip to main content

New Endoscopic Tools for Special Indications

  • Chapter
  • First Online:
Innovative Endoscopic and Surgical Technology in the GI Tract

Abstract

More recent endoscopic developments have created highly innovative techniques and new technology for replacing surgical procedures such as tumor resections, myotomies and bypassing malignant stenoses. A number of new ideas and technologies around endoscopic tools are emerging to improve diagnostic accuracy and therapeutic efficacy of procedures. This chapter will focus on a few of these new endoscopic tools for special indications such as the camera cap for additional cameras in diagnostic colonoscopy, an external additional working channel connected to the scope for additional instruments, a multi-size bouginage system, and several 3D-printed prototypes of endoscopic manipulator systems. The term “Endoneering” stands for a combination of endoscopy and engineering, which was coined to characterize the new cooperation between engineers and endoscopists, which is very fruitful in developing interventional endoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pimentel-Nunes P, Dinis-Ribeiro M, Ponchon T, Repici A, Vieth M, De Ceglie A, Amato A, Berr F, Bhandari P, Bialek A, Conio M, Haringsma J, Langner C, Meisner S, Messmann H, Morino M, Neuhaus H, Piessevaux H, Rugge M, Saunders BP, Robaszkiewicz M, Seewald S, Kashin S, Dumonceau JM, Hassan C, Deprez PH. Endoscopic submucosal dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2015;47(9):829–54. https://doi.org/10.1055/s-0034-1392882.

    Article  PubMed  Google Scholar 

  2. Hong TC, Liou JM, Yeh CC, Yen HH, Wu MS, Lai IR, Chen CC. Endoscopic submucosal dissection comparing with surgical resection in patients with early gastric cancer – a single center experience in Taiwan. J Formos Med Assoc. 2020:S0929-6646(20)30401-0. https://doi.org/10.1016/j.jfma.2020.08.027. Epub ahead of print. PMID: 32900577.

  3. Dumonceau JM, Deprez PH, Jenssen C, Iglesias-Garcia J, Larghi A, Vanbiervliet G, Aithal GP, Arcidiacono PG, Bastos P, Carrara S, Czakó L, Fernández-Esparrach G, Fockens P, Ginès À, Havre RF, Hassan C, Vilmann P, van Hooft JE, Polkowski M. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated January 2017. Endoscopy. 2017;49(7):695–714. https://doi.org/10.1055/s-0043-109021.

    Article  PubMed  Google Scholar 

  4. Guedes HG, De Moura DTH, Guedes HG, Duarte RB, et al. A comparison of the efficiency of 22G versus 25G needles in EUS-FNA for solid pancreatic mass assessment: a systematic review and meta-analysis. Clin Sao Paulo Braz. 2018;73:e261.

    Google Scholar 

  5. Fritscher-Ravens A, Brand L, Knöfel WT, Bobrowski C, Topalidis T, Thonke F, de Weerth A, Soehendra N. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis. Am J Gastroenterol. 2002;97(11):2768–75. https://doi.org/10.1111/j.1572-0241.2002.07020.x. PMID: 12425546.

    Article  PubMed  Google Scholar 

  6. Bang JY, Magee SH, Ramesh J, Trevino JM, Varadarajulu S. Randomized trial comparing fanning with standard technique for endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic mass lesions. Endoscopy. 2013;45(6):445–50. https://doi.org/10.1055/s-0032-1326268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Attili F, Fabbri C, Yasuda I, Fuccio L, Palazzo L, Tarantino I, Dewitt J, Frazzoni L, Rimbaş M, Larghi A. Low diagnostic yield of transduodenal endoscopic ultrasound-guided fine needle biopsy using the 19-gauge Flex needle: a large multicenter prospective study. Endosc Ultrasound. 2017;6(6):402–8. https://doi.org/10.4103/eus.eus_54_17. PMID: 29251275; PMCID: PMC5752763.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki R, Lee JH, Krishna SG, Ramireddy S, Qiao W, Weston B, Ross WA, Bhutani MS. Repeat endoscopic ultrasound-guided fine needle aspiration for solid pancreatic lesions at a tertiary referral center will alter the initial inconclusive result. J Gastrointestin Liver Dis. 2013;22(2):183–7. PMID: 23799217.

    PubMed  Google Scholar 

  9. Song TJ, Kim JH, Lee SS, Eum JB, Moon SH, Park DY, Seo DW, Lee SK, Jang SJ, Yun SC, Kim MH. The prospective randomized, controlled trial of endoscopic ultrasound-guided fine-needle aspiration using 22G and 19G aspiration needles for solid pancreatic or peripancreatic masses. Am J Gastroenterol. 2010;105(8):1739–45. https://doi.org/10.1038/ajg.2010.108. PMID: 20216532.

    Article  PubMed  Google Scholar 

  10. Hayashi T, Ishiwatari H, Yoshida M, Ono M, Sato T, Miyanishi K, Sato Y, Kobune M, Takimoto R, Mitsuhashi T, Asanuma H, Ogino J, Hasegawa T, Sonoda T, Kato J. Rapid on-site evaluation by endosonographer during endoscopic ultrasound-guided fine needle aspiration for pancreatic solid masses. J Gastroenterol Hepatol. 2013;28(4):656–63. https://doi.org/10.1111/jgh.12122. PMID: 23301574.

    Article  PubMed  Google Scholar 

  11. Hucl T, Wee E, Anuradha S, Gupta R, Ramchandani M, Rakesh K, Shrestha R, Reddy DN, Lakhtakia S. Feasibility and efficiency of a new 22G core needle: a prospective comparison study. Endoscopy. 2013;45(10):792–8. https://doi.org/10.1055/s-0033-1344217. PMID: 24068588.

    Article  PubMed  Google Scholar 

  12. Kandel P, Tranesh G, Nassar A, Bingham R, Raimondo M, Woodward TA, Gomez V, Wallace MB. EUS-guided fine needle biopsy sampling using a novel fork-tip needle: a case-control study. Gastrointest Endosc. 2016;84(6):1034–9. https://doi.org/10.1016/j.gie.2016.03.1405. PMID: 27018087.

    Article  PubMed  Google Scholar 

  13. Hann A, Walter BM, Epp S, Ayoub YK, Meining A. The "Twist-Needle" – a new concept for endoscopic ultrasound-guided fine needle-biopsy. Endosc Int Open. 2019;7(12):E1658–62. https://doi.org/10.1055/a-0998-3997. PMID: 31788549; PMCID: PMC6877432.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubin M, Lurie L, Bose K, Kim SH. Expanding the view of a standard colonoscope with the Third Eye Panoramic cap. World J Gastroenterol. 2015;21(37):10683–7. https://doi.org/10.3748/wjg.v21.i37.10683. PMID: 26457029; PMCID: PMC4588091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walter BM, Hann A, Frank R, Meining A. A 3D-printed cap with sideoptics for colonoscopy: a randomized ex vivo study. Endoscopy. 2017;49(8):808–12. https://doi.org/10.1055/s-0043-105071. PMID: 28445902.

    Article  PubMed  Google Scholar 

  16. Lew RJ, Kochman ML. A review of endoscopic methods of esophageal dilation. J Clin Gastroenterol. 2002;35(2):117–26. https://doi.org/10.1097/00004836-200208000-00001. PMID: 12172355.

    Article  PubMed  Google Scholar 

  17. Repici A, Small AJ, Mendelson A, Jovani M, Correale L, Hassan C, Ridola L, Anderloni A, Ferrara EC, Kochman ML. Natural history and management of refractory benign esophageal strictures. Gastrointest Endosc. 2016;84(2):222–8. https://doi.org/10.1016/j.gie.2016.01.053. Epub 2016 Jan 30. PMID: 26828759.

    Article  PubMed  Google Scholar 

  18. Adler DG, Siddiqui AA. Endoscopic management of esophageal strictures. Gastrointest Endosc. 2017;86(1):35–43. https://doi.org/10.1016/j.gie.2017.03.004. Epub 2017 Mar 10. PMID: 28288841.

    Article  PubMed  Google Scholar 

  19. Grooteman KV, Wong Kee Song LM, Vleggaar FP, Siersema PD, Baron TH. Non-adherence to the rule of 3 does not increase the risk of adverse events in esophageal dilation. Gastrointest Endosc. 2017;85(2):332–337.e1. https://doi.org/10.1016/j.gie.2016.07.062. PMID: 27506393.

    Article  PubMed  Google Scholar 

  20. Buess G, Thon J, Hutterer F. A multiple-diameter bougie fitted over a small-caliber fiberscope. Endoscopy. 1983;15(2):53–4. https://doi.org/10.1055/s-2007-1018610. PMID: 6851953.

    Article  CAS  PubMed  Google Scholar 

  21. Jones MP, Bratten JR, McClave SA. The Optical Dilator: a clear, over-the-scope bougie with sequential dilating segments. Gastrointest Endosc. 2006;63(6):840–5. https://doi.org/10.1016/j.gie.2005.08.042. PMID: 16650550.

    Article  PubMed  Google Scholar 

  22. Walter B, Schmidbaur S, Rahman I, Albers D, Schumacher B, Meining A. The BougieCap – a new method for endoscopic treatment of complex benign esophageal stenosis: results from a multicenter study. Endoscopy. 2019;51(9):866–70. https://doi.org/10.1055/a-0959-1535. PMID: 31342473.

    Article  PubMed  Google Scholar 

  23. Ell C, May A, Pech O, et al. Curative endoscopic resection of early esophageal adenocarcinomas (Barrett's cancer). Gastrointest Endosc. 2007;65(1):3–10. https://doi.org/10.1016/j.gie.2006.04.033.

    Article  PubMed  Google Scholar 

  24. Meier B, Schmidt A, Glaser N, Meining A, Walter B, Wannhoff A, Riecken B, Caca K. Endoscopic full-thickness resection of gastric subepithelial tumors with the gFTRD-system: a prospective pilot study (RESET trial). Surg Endosc. 2019; https://doi.org/10.1007/s00464-019-06839-2.

  25. Saito Y, Fukuzawa M, Matsuda T, Fukunaga S, Sakamoto T, Uraoka T, Nakajima T, Ikehara H, Fu KI, Itoi T, Fujii T. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc. 2010;24(2):343–52. https://doi.org/10.1007/s00464-009-0562-8. PMID: 19517168.

    Article  PubMed  Google Scholar 

  26. Neuhaus H, Costamagna G, Devière J, Fockens P, Ponchon T, Rösch T, ARCADE Group. Endoscopic submucosal dissection (ESD) of early neoplastic gastric lesions using a new double-channel endoscope (the "R-scope"). Endoscopy. 2006;38(10):1016–23. https://doi.org/10.1055/s-2006-944830. PMID: 17058167.

    Article  CAS  PubMed  Google Scholar 

  27. Meining A, Feussner H, Swain P, Yang GZ, Lehmann K, Zorron R, Meisner S, Ponsky J, Martiny H, Reddy N, Armengol-Miro JR, Fockens P, Fingerhut A, Costamagna G. Natural-orifice transluminal endoscopic surgery (NOTES) in Europe: summary of the working group reports of the Euro-NOTES meeting 2010. Endoscopy. 2011;43(2):140–3.

    Article  CAS  Google Scholar 

  28. Fuchs KH, Meining A, von Renteln D, Fernandez-Esparrach G, Breithaupt W, Zornig C, Lacy A. Euro-NOTES Status Paper: from the concept to clinical practice. Surg Endosc. 2013;27(5):1456–67.

    Article  CAS  Google Scholar 

  29. Zizer E, Roppenecker D, Helmes F, Hafner S, Krieger Y, Lüth T, Meining A. A new 3D-printed overtube system for endoscopic submucosal dissection: first results of a randomized study in a porcine model. Endoscopy. 2016;48(8):765. https://doi.org/10.1055/s-0042-106263. Epub 2016 Apr 21. Erratum for: Endoscopy 2016 Aug;48(8):762-5.

    Article  PubMed  Google Scholar 

  30. Imaeda H, Iwao Y, Ogata H, Ichikawa H, Mori M, Hosoe N, Masaoka T, Nakashita M, Suzuki H, Inoue N, Aiura K, Nagata H, Kumai K, Hibi T. A new technique for endoscopic submucosal dissection for early gastric cancer using an external grasping forceps. Endoscopy. 2006;38(10):1007–10. https://doi.org/10.1055/s-2006-925264. PMID: 16673308.

    Article  CAS  PubMed  Google Scholar 

  31. Walter B, Schmidbaur S, Krieger Y, Meining A. Improved endoscopic resection of large flat lesions and early cancers using an external additional working channel (AWC): a case series. Endosc Int Open. 2019;7(2):E298–301. https://doi.org/10.1055/a-0824-6912. PMID: 30746432; PMCID: PMC6368484.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6–9. https://doi.org/10.1510/icvts.2007.156588. Epub 2007 Oct 9. PMID: 17925319.

    Article  PubMed  Google Scholar 

  33. Eltorai AE, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics. 2015;38(11):684–7. https://doi.org/10.3928/01477447-20151016-05. PMID: 26558661.

    Article  PubMed  Google Scholar 

  34. Li Y, Yang X, Li D. The application of three-dimensional surface imaging system in plastic and reconstructive surgery. Ann Plast Surg. 2016;77 Suppl 1:S76–83. https://doi.org/10.1097/SAP.0000000000000813. PMID: 27015345.

    Article  CAS  PubMed  Google Scholar 

  35. Malik HH, Darwood AR, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, Baskaradas A. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015;199(2):512–22. https://doi.org/10.1016/j.jss.2015.06.051. PMID: 26255224.

    Article  PubMed  Google Scholar 

  36. Steinemann DC, Müller PC, Apitz M, Nickel F, Kenngott HG, Müller-Stich BP, Linke GR. An ad hoc three dimensionally printed tool facilitates intraesophageal suturing in experimental surgery. J Surg Res. 2018;223:87–93. https://doi.org/10.1016/j.jss.2017.10.026. PMID: 29433890; PMCID: PMC5961934.

    Article  PubMed  Google Scholar 

  37. Krieger YS, Ostler D, Rzepka K, Meining A, Feussner H, Wilhelm D, Lueth TC. Evaluation of long-term stability of monolithic 3D-printed robotic manipulator structures for minimally invasive surgery. Int J Comput Assist Radiol Surg. 2020;15(10):1693–7. https://doi.org/10.1007/s11548-020-02244-6. Epub 2020 Aug 13. PMID: 32789728.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meining A. Endoneering: a new perspective for basic research in gastrointestinal endoscopy. United European Gastroenterol J. 2020;8(3):241–5. https://doi.org/10.1177/2050640620913433. PMID: 32310738; PMCID: PMC7184653.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feussner H, Wilhelm D, Navab N, Knoll A, Lüth T. Surgineering: a new type of collaboration among surgeons and engineers. Int J Comput Assist Radiol Surg. 2019;14(2):187–90. https://doi.org/10.1007/s11548-018-1893-5. PMID: 30539502.

    Article  CAS  PubMed  Google Scholar 

  40. Meining A. Setting the stage for research in endoscopy. United European Gastroenterol J. 2019;7(2):177–8. https://doi.org/10.1177/2050640619829585. Epub 2019 Mar 2. PMID: 31080600; PMCID: PMC6498792.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Meining .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meining, A., Fuchs, KH. (2021). New Endoscopic Tools for Special Indications. In: Horgan, S., Fuchs, KH. (eds) Innovative Endoscopic and Surgical Technology in the GI Tract . Springer, Cham. https://doi.org/10.1007/978-3-030-78217-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78217-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78216-0

  • Online ISBN: 978-3-030-78217-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics