Skip to main content

Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis

  • Chapter
  • First Online:
Molecular Mechanisms in Spermatogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, K., Ru, B., Zhang, Y., et al. (2019). Sertoli cell–specific coxsackievirus and adenovirus receptor regulates cell adhesion and gene transcription via β-catenin inactivation and Cdc42 activation. The FASEB Journal, 33(6), 7588–7602.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, J. W., Zhou, B., Yu, Q. C., et al. (2006). Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circulation Research, 98(7), 923–930.

    Article  CAS  PubMed  Google Scholar 

  3. Excoffon, K. J. D. A. (2020). The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Letters, 594(12), 1828–1837.

    Google Scholar 

  4. Cohen, C. J., Shieh, J. T. C., Pickles, R. J., Okegawa, T., Hsieh, J. T., & Bergelson, J. M. (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15191–15196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thoelen, I., Magnusson, C., Tågerud, S., Polacek, C., Lindberg, M., & Van Ranst, M. (2001). Identification of alternative splice products encoded by the human coxsackie-adenovirus receptor gene. Biochemical and Biophysical Research Communications, 287(1), 216–222.

    Article  CAS  PubMed  Google Scholar 

  6. Dörner, A., Xiong, D., Couch, K., Yajima, T., & Knowlton, K. U. (2004). Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection. The Journal of Biological Chemistry, 279(18), 18497–18503.

    Article  PubMed  Google Scholar 

  7. Dörner, A., Grunert, H. P., Lindig, V., et al. (2006). Treatment of coxsackievirus-B3-infected BALB/c mice with the soluble coxsackie adenovirus receptor CAR4/7 aggravates cardiac injury. Journal of Molecular Medicine, 84(10), 842–851.

    Article  PubMed  Google Scholar 

  8. Asher, D. R., Cerny, A. M., Weiler, S. R., et al. (2005). Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development. Genesis, 42(2), 77–85.

    Article  CAS  PubMed  Google Scholar 

  9. Dorner, A. A., Wegmann, F., Butz, S., et al. (2005). Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. Journal of Cell Science, 118(15), 3509–3521.

    Article  CAS  PubMed  Google Scholar 

  10. Pazirandeh, A., Sultana, T., Mirza, M., et al. (2011). Multiple phenotypes in adult mice following inactivation of the coxsackievirus and adenovirus receptor (Car) gene. PLoS One, 6(6), e20203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mirza, M., Pang, M. F., Zaini, M. A., et al. (2012). Essential role of the coxsackie - and adenovirus receptor (CAR) in development of the lymphatic system in mice. PLoS One, 7(5), e37523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marsman, R. F. J., Bezzina, C. R., Freiberg, F., et al. (2014). Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Journal of the American College of Cardiology, 63(6), 549–559.

    Article  CAS  PubMed  Google Scholar 

  13. Sultana, T., Hou, M., Stukenborg, J. B., et al. (2014). Mice depleted of the coxsackievirus and adenovirus receptor display normal spermatogenesis and an intact blood-testis barrier. Reproduction, 147(6), 875–883.

    Article  CAS  PubMed  Google Scholar 

  14. Schell, C., Kretz, O., Bregenzer, A., et al. (2015). Podocyte-specific deletion of murine CXADR does not impair podocyte development, function or stress response. PLoS One, 10(6), e0129424.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Outhwaite, J. E., Patel, J., & Simmons, D. G. (2019). Secondary placental defects in Cxadr mutant mice. Frontiers in Physiology, 10, 622.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tomko, R. P., Xu, R., & Philipson, L. (1997). HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Freimuth, P., Springer, K., Berard, C., Hainfeld, J., Bewley, M., & Flanagan, J. (1999). Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. Journal of Virology, 73(2), 1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomko, R. P., Johansson, C. B., Totrov, M., Abagyan, R., Frisén, J., & Philipson, L. (2000). Expression of the adenovirus receptor and its interaction with the fiber knob. Experimental Cell Research, 255(1), 47–55.

    Article  CAS  PubMed  Google Scholar 

  19. He, Y., Chipman, P. R., Howitt, J., et al. (2001). Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nature Structural Biology, 8(10), 874–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Excoffon, K. J. D. A., Traver, G. L., & Zabner, J. (2005). The role of the extracellular domain in the biology of the coxsackievirus and adenovirus receptor. American Journal of Respiratory Cell and Molecular Biology, 32(6), 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Excoffon, K. J. D. A., Gansemer, N., Traver, G., & Zabner, J. (2007). Functional effects of coxsackievirus and adenovirus receptor glycosylation on homophilic adhesion and adenoviral infection. Journal of Virology, 81(11), 5573–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, J. W., Glasgow, J. N., Nakayama, M., Ak, F., Ugai, H., & Curiel, D. T. (2013). An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer. PLoS One, 8(2), e55533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, H., Wu, L., & Zhou, Z. H. (2011). Model of the trimeric fiber and its interactions with the pentameric penton base of human adenovirus by cryo-electron microscopy. Journal of Molecular Biology, 406(5), 764–774.

    Article  CAS  PubMed  Google Scholar 

  24. Diaz, F., Gravotta, D., Deora, A., et al. (2009). Clathrin adaptor AP1B controls adenovirus infectivity of epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11143–11148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Excoffon, K. J. D. A., Avenarius, M. R., Hansen, M. R., et al. (2006). The coxsackievirus and adenovirus receptor: A new adhesion protein in cochlear development. Hearing Research, 215(1–2), 1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Oh, Y. S., Nah, W. H., Choi, B., Kim, S. H., & Gye, M. C. (2016). Coxsackievirus and adenovirus receptor, a tight junction protein, in peri-implantation mouse embryos. Biology of Reproduction, 95(1), 5.

    Article  PubMed  Google Scholar 

  27. Nilchian, A., Johansson, J., Ghalali, A., et al. (2019). CXADR-mediated formation of an Akt inhibitory signalosome at tight junctions controls epithelial–mesenchymal plasticity in breast cancer. Cancer Research, 79(1), 47–60.

    Article  CAS  PubMed  Google Scholar 

  28. Walters, R. W., Freimuth, P., Moninger, T. O., Ganske, I., Zabner, J., & Welsh, M. J. (2002). Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell, 110(6), 789–799.

    Article  CAS  PubMed  Google Scholar 

  29. Coyne, C. B., Voelker, T., Pichla, S. L., & Bergelson, J. M. (2004). The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. The Journal of Biological Chemistry, 279(46), 48079–48084.

    Article  CAS  PubMed  Google Scholar 

  30. Honda, T., Saitoh, H., Masuko, M., et al. (2000). The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Molecular Brain Research, 77(1), 19–28.

    Article  CAS  PubMed  Google Scholar 

  31. Raschperger, E., Thyberg, J., Pettersson, S., Philipson, L., Fuxe, J., & Pettersson, R. F. (2006). The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Experimental Cell Research, 312(9), 1566–1580.

    Article  CAS  PubMed  Google Scholar 

  32. Huang, K. C., Yasruel, Z., Guérin, C., Holland, P. C., & Nalbantoglu, J. (2007). Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: Binding to actin. FEBS Letters, 581(14), 2702–2708.

    Article  CAS  PubMed  Google Scholar 

  33. Shono, A., Tsukaguchi, H., Yaoita, E., et al. (2007). Podocin participates in the assembly of tight junctions between foot processes in nephrotic podocytes. Journal of the American Society of Nephrology, 18(9), 2525–2533.

    Article  CAS  PubMed  Google Scholar 

  34. Lim, B. K., Xiong, D., Dorner, A., et al. (2008). Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. The Journal of Clinical Investigation, 118(8), 2758–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hussain, F., Morton, P. E., Snippe, M., et al. (2011). CAR modulates E-cadherin dynamics in the presence of adenovirus type 5. PLoS One, 6(8), e23056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morton, P. E., Hicks, A., Nastos, T., Santis, G., & Parsons, M. (2013). CAR regulates epithelial cell junction stability through control of E-cadherin trafficking. Scientific Reports, 3, e2889.

    Article  Google Scholar 

  37. Zen, K., Liu, Y., McCall, I. C., et al. (2005). Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Molecular Biology of the Cell, 16(6), 2694–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Witherden, D. A., Verdino, P., Rieder, S. E., et al. (2010). The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science, 329(5996), 1205–1210.

    Google Scholar 

  39. Farmer, C., Morton, P. E., Snippe, M., Santis, G., & Parsons, M. (2009). Coxsackie adenovirus receptor (CAR) regulates integrin function through activation of p44/42 MAPK. Experimental Cell Research, 315(15), 2637–2647.

    Article  CAS  PubMed  Google Scholar 

  40. Caruso, L., Yuen, S., Smith, J., Husain, M., & Opavsky, M. A. (2010). Cardiomyocyte-targeted overexpression of the coxsackie-adenovirus receptor causes a cardiomyopathy in association with β-catenin signaling. Journal of Molecular and Cellular Cardiology, 48(6), 1194–1205.

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto, K., Shariat, S. F., Ayala, G. E., Rauen, K. A., & Lerner, S. P. (2005). Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology, 66(2), 441–446.

    Article  PubMed  Google Scholar 

  42. Korn, W. M., Macal, M., Christian, C., et al. (2006). Expression of the coxsackievirus- and adenovirus receptor in gastrointestinal cancer correlates with tumor differentiation. Cancer Gene Therapy, 13(8), 792–797.

    Article  CAS  PubMed  Google Scholar 

  43. Anders, M., Vieth, M., Röcken, C., et al. (2009). Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression. British Journal of Cancer, 100(2), 352–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stecker, K., Vieth, M., Koschel, A., Wiedenmann, B., Röcken, C., & Anders, M. (2011). Impact of the coxsackievirus and adenovirus receptor on the adenoma-carcinoma sequence of colon cancer. British Journal of Cancer, 104(9), 1426–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Houri, N., Huang, K.-C., & Nalbantoglu, J. (2013). The Coxsackievirus and Adenovirus Receptor (CAR) undergoes ectodomain shedding and Regulated Intramembrane Proteolysis (RIP). PLoS One, 8(8), e73296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cavallaro, U., & Dejana, E. (2011). Adhesion molecule signalling: Not always a sticky business. Nature Reviews Molecular Cell Biology, 12(3), 189–197.

    Article  CAS  PubMed  Google Scholar 

  47. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., et al. (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101(33), 12130–12135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peters, A. H. F. M., Drumm, J., Ferrell, C., et al. (2001). Absence of germline infection in male mice following intraventricular injection of adenovirus. Molecular Therapy, 4(6), 603–613.

    Article  CAS  PubMed  Google Scholar 

  49. Mirza, M., Hreinsson, J., Strand, M. L., et al. (2006). Coxsackievirus and adenovirus receptor (CAR) is expressed in male germ cells and forms a complex with the differentiation factor JAM-C in mouse testis. Experimental Cell Research, 312(6), 817–830.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, C. Q. F., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2007). Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Experimental Cell Research, 313(7), 1373–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Su, L., Mruk, D. D., & Yan, C. C. (2012). Regulation of the blood-testis barrier by coxsackievirus and adenovirus receptor. The American Journal of Physiology: Cell Physiology, 303(8), C843–C853.

    Article  CAS  Google Scholar 

  52. Mirza, M., Petersen, C., Nordqvist, K., & Sollerbrant, K. (2007). Coxsackievirus and adenovirus receptor is up-regulated in migratory germ cells during passage of the blood-testis barrier. Endocrinology, 148(11), 5459–5469.

    Article  CAS  PubMed  Google Scholar 

  53. Gao, Y., & Lui, W. Y. (2014). Synergistic effect of interferon-gamma and tumor necrosis factor-alpha on coxsackievirus and adenovirus receptor expression: An explanation of cell sloughing during testicular inflammation in mice. Biology of Reproduction, 90(3), 59.

    Article  PubMed  Google Scholar 

  54. Saitou, M., Furuse, M., Sasaki, H., et al. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Molecular Biology of the Cell, 11(12), 4131–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Grant support: The work was funded by Hong Kong Research Grants Council (17100816) and HKU/CRCG Seed Funding for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Yee Lui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Lui, WY. (2021). Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis. In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_5

Download citation

Publish with us

Policies and ethics