Skip to main content

Treatment of Retinal Detachment

  • Chapter
  • First Online:
Lee's Ophthalmic Histopathology
  • 815 Accesses

Abstract

This chapter serves primarily as a guide to the causative pathology and the secondary disturbances that are encountered when an enucleated eye is submitted with a clinical history of “Retinal detachment – treatment unsuccessful.” Retinal detachment may be “Rhegmatogenous” which occurs when fluid passes from the vitreous cavity through a hole in the retina into the “subretinal space.” The “hole” or “tear” is most commonly secondary to degenerative disease in the retina and vitreous. By contrast, “exudative” detachment refers to accumulation of fluid under the neural retina in situations in which there is abnormally excessive permeability in the retinal vessels or in the choroidal vessels. This process is encountered in inflammation or neoplasia and in retinal or choroidal vasculopathy with loss of endothelial cell integrity, and in this event the subretinal space is filled with a more viscous proteinaceous exudate. “Tractional” detachment occurs when there is condensation or organization of the vitreous, by trauma or neovascularization. In the treatment of retinal detachment there are basically two lines of approach to sealing off a hole in the retina after subretinal fluid has been drained either by indenting the sclera and choroid so that the retinal hole is sealed or by replacing the vitreous with a bubble of silicone oil, or inert gas. The pathological effects at these attempts at treatment are commonly seen in globes enucleated for retinal detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foos RY, Allen RA. Retinal tears and lesser lesions of the peripheral retina in autopsy eyes. Am J Ophthalmol. 1967;64:643–55.

    Article  Google Scholar 

  2. Barr CC. The histopathology of successful retinal reattachment. Retina. 1990;10:189–94.

    Article  CAS  PubMed  Google Scholar 

  3. Chang C-J, Lai WW, Edward DP, Tso MOM. Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol. 1995;113:880–6.

    Article  CAS  PubMed  Google Scholar 

  4. Luthert PJ, Chong NH. Photoreceptor rescue. Eye. 1998;12:591–6.

    Article  PubMed  Google Scholar 

  5. Nork TM, Millechia LL, Strickland BD, Linberg JV, Chao G-M. Selective loss of blue cones and rods in human retinal detachment. Arch Ophthalmol. 1995;113:1066–73.

    Article  CAS  PubMed  Google Scholar 

  6. Caporossi T, Tartaro R, Bacherini D, et al. Applications of the amniotic membrane in vitreoretinal surgery. J Clin Med. 2020;9(8):2675.

    Article  PubMed Central  Google Scholar 

  7. Cherfan GM, Smiddy WE, Michels RG, de la Cruz Z, Wilkinson CP, Green WR. Clinicopathologic correlation of pigmented epiretinal membranes. Am J Ophthalmol. 1988;106:536–45.

    Article  CAS  PubMed  Google Scholar 

  8. Hui Y-N, Goodnight R, Zhang X-J, Sorgente N, Ryan S. Glial epiretinal membranes and contraction. Immunohistochemical and morphologic studies. Arch Ophthalmol. 1988;106:1280–5.

    Article  CAS  PubMed  Google Scholar 

  9. Morino I, Hiscott P, McKechnie N, Grierson I. Variation in epiretinal membrane components with clinical duration of the proliferative tissue. Br J Ophthalmol. 1990;74:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nork TM, Wallow IH, Sramek SJ, Stevens TS, De Venecia G. Immuno-cytochemical study of an eye with proliferative vitreoretinopathy and retinal tacks. Retina. 1990;10:78–85.

    Article  CAS  PubMed  Google Scholar 

  11. Ohira A, de Juan Jr E. Characterization of glial involvement in proliferative diabetic retinopathy. Ophthalmologica. 1990;201:187–95.

    Article  CAS  PubMed  Google Scholar 

  12. Hiscott P, Gray R, Grierson I, Gregor Z. Cytokeratin-containing cells in proliferative diabetic retinopathy membranes. Br J Ophthalmol. 1994;78:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pastor JC. Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 1998;43:3–18.

    Article  CAS  PubMed  Google Scholar 

  14. Casaroli-Marano RP, Pagan R, Vilaro S. Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1999;40:2062–72.

    CAS  PubMed  Google Scholar 

  15. Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy (PVR). Eye (Lond). 2020;34(2):246–50.

    Article  Google Scholar 

  16. Boulton M, Foreman D, Williams G, Mcleod D. VEGF localisation in diabetic retinopathy. Br J Ophthalmol. 1998;82:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toti P, Greco G, Montolese E, Stumpo M, Cardone C, Tosi GM. Cell composition and immunohistochemical detection of VEGF, TGF-beta and TNF-alpha in proliferative vitreoretinopathy. J Submicrosc Cytol Pathol. 1999;31:363–6.

    CAS  PubMed  Google Scholar 

  18. Liu B, Deng T, Zhang J. Risk factors for central serous chorioretinopathy. Retina. 2016;36(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  19. Park DW, Schatz H, Gaffney MM, Mcdonald HR, Johnson RN, Schaeffer D. Central serous chorioretinopathy in two families. Eur J Ophthalmol. 1998;8(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mazzuca DE, Benson WE. Central serous retinopathy: variants. Surv Ophthalmol. 1986;31:170–4.

    Article  CAS  PubMed  Google Scholar 

  21. Smiddy WE, Michels RG, Green WR. Morphology, pathology, and surgery of idiopathic vitreoretinal macular disorders. Retina. 1990;10:288–96.

    Article  CAS  PubMed  Google Scholar 

  22. Ahlers C, Geitzenauer W, Stock G, Golbaz I, Schimdt-Erfurth U, Prunte C. Alterations of intraretinal layers in acute central serous chorioretinopathy. Acta Ophthalmol. 2009;87:511–6.

    Article  PubMed  Google Scholar 

  23. Maltsev DS, Kulikov AN, Chhablani J. Topography-guided identification of leakage point in central serous chorioretinopathy: a base for fluorescein angiography-free focal laser photocoagulation. Br J Ophthalmol. 2018;102(9):1218–25.

    Article  PubMed  Google Scholar 

  24. Bousquet E, Bonnin S, Mrejen S, Krivosic V, Tadayoni R, Gaudric A. Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy. Retina. 2018;38(3):629–38.

    Article  PubMed  Google Scholar 

  25. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112(8):1057–62.

    Article  CAS  PubMed  Google Scholar 

  26. Chung Y-R, Kim JW, Choi S-Y, Park SW, Kim JH, Lee K. Subfoveal choroidal thickness and vascular diameter in active and resolved central serous chorioretinopathy. Retina. 2018;38(1):102–7.

    Article  PubMed  Google Scholar 

  27. Prünte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol. 1996;121(1):26–34.

    Article  PubMed  Google Scholar 

  28. Fine HF, Ober MD, Hariprasad SM. Current concepts in managing central serous chorioretinopathy. Ophthal Surg Lasers Imaging Retina. 2014;45(1):9–13.

    Article  Google Scholar 

  29. Semeraro F, Morescalchi F, Russo A, et al. Central serous chorioretinopathy: pathogenesis and management. Clin Ophthalmol. 2019;13:2341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luttrull JK. Low-intensity/high-density subthreshold diode micropulse laser for central serous chorioretinopathy. Retina. 2016;36(9):1658–63.

    Article  PubMed  Google Scholar 

  31. Schaal KB, Hoeh AE, Scheuerle A, Schuett F, Dithmar S. Intravitreal bevacizumab for treatment of chronic central serous chorioretinopathy. Eur J Ophthalmol. 2009;19(4):613–7.

    Article  PubMed  Google Scholar 

  32. Lim JW, Kim MU, Shin M-C. Aqueous humor and plasma levels of vascular endothelial growth factor and interleukin-8 in patients with central serous chorioretinopathy. Retina. 2010;30(9):1465–71.

    Article  PubMed  Google Scholar 

  33. Kanyange ML, De Laey JJ. Long-term follow-up of central serous chorioretinopathy (CSCR). Bull Soc Belge Ophtalmol. 2002;284:39–44.

    Google Scholar 

  34. Baran NV, Gürlü VP, Esgin H. Long-term macular function in eyes with central serous chorioretinopathy. Clin Experiment Ophthalmol. 2005;33(4):369–72.

    Article  PubMed  Google Scholar 

  35. Eagle RC. Optical coherence tomography: clinicopathologic correlations—The 2016 Gordon K. Klintworth Lecture. Ocul Oncol Pathol. 2018;4(4):203–12.

    Article  PubMed  Google Scholar 

  36. Agarwal D, Gelman R, Prospero Ponce C, Stevenson W, Christoforidis JB. The vitreomacular interface in diabetic retinopathy. J Ophthalmol. 2015;2015:392983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Straatsma BR, Zeegen PD, Foos RY, Feman SS, Shabo AL. Lattice degeneration of the retina. Am J Ophthalmol. 1974;77:619–49.

    Article  CAS  PubMed  Google Scholar 

  38. Byer NE. Long-term natural history of lattice degeneration of the retina. Ophthalmology. 1989;96:1396–401.

    Article  CAS  PubMed  Google Scholar 

  39. Krohn J, Seland JH. Simultaneous bilateral rhegmatogenous retinal detachment. Acta Ophthalmol Scand. 2000;78:354–8.

    Article  CAS  PubMed  Google Scholar 

  40. Foos RY, Simons KB. Vitreous in lattice degeneration of the retina. Ophthalmology. 1984;91:452–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis H. Peripheral retinal degenerations and the risk of retinal detachment. Am J Ophthalmol. 2003;136:155–60.

    Article  PubMed  Google Scholar 

  42. Tsai CY, Hung KC, Wang SW, Chen MS, Ho TC. Spectral-domain optical coherence tomography of peripheral lattice degeneration of myopic eyes before and after laser photocoagulation. J Formos Med Assoc. 2019;118(3):679–85.

    Article  PubMed  Google Scholar 

  43. Meguro A, Ideta H, Ota M, et al. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina. PLoS One. 2012;7(6):e39300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okazaki S, Meguro A, Ideta R, et al. Common variants in the COL2A1 gene are associated with lattice degeneration of the retina in a Japanese population. Mol Vis. 2019;25:843–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Malley PF, Allen RA. Peripheral cystoid degeneration of the retina: incidence and distribution in 1,000 autopsy cases. Arch Ophthalmol. 1967;77:769–76.

    Article  PubMed  Google Scholar 

  46. Reese AB, Jones IS, Cooper WC. Vitreomacular traction syndrome confirmed histologically. Am J Ophthalmol. 1970;69:975–7.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson MW. Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc. 2005;103:537–67.

    PubMed  PubMed Central  Google Scholar 

  48. Smiddy WE, Flynn HW Jr. Pathogenesis of macular holes and therapeutic implications. Am J Ophthalmol. 2004;137:525–37.

    Article  CAS  PubMed  Google Scholar 

  49. Duker JS, Kaiser PK, Binder S, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120(12):2611–9.

    Article  PubMed  Google Scholar 

  50. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19:323–44.

    Article  CAS  PubMed  Google Scholar 

  51. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22:1214–22.

    Article  PubMed  Google Scholar 

  52. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149:371–82.

    Article  PubMed  Google Scholar 

  53. Steel DHW, Lotery AG. Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye. 2013;27:S1–S21.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sebag J, Wang MY, Nguyen D, Sadun AA. Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc. 2009;107:35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jackson TL, Nicod E, Angelis A, et al. Pars plana vitrectomy for vitreomacular traction syndrome: a systematic review and metaanalysis of safety and efficacy. Retina. 2013;33(10):2012–7.

    Article  PubMed  Google Scholar 

  56. Chang JS, Smiddy WE. Cost evaluation of surgical and pharmaceutical options in treatment for vitreomacular adhesions and macular holes. Ophthalmology. 2014;121(9):1720–6.

    Article  PubMed  Google Scholar 

  57. Haller JA, Stalmans P, Benz MS, et al. Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology. 2015;122(1):117–22.

    Article  PubMed  Google Scholar 

  58. Singh RP, Li A, Bedi R, et al. Anatomical and visual outcomes following ocriplasmin treatment for symptomatic vitreomacular traction syndrome. Br J Ophthalmol. 2014;98(3):356–60.

    Article  PubMed  Google Scholar 

  59. Rodrigues IA, Stangos AN, McHugh DA, Jackson TL. Intravitreal injection of expansile perfluoropropane (c(3)f(8)) for the treatment of vitreomacular traction. Am J Ophthalmol. 2013;155(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  60. Steinle NC, Dhoot DS, Quezada Ruiz C, et al. Treatment of vitreomacular traction with intravitreal perfluoropropane (C3f8) injection. Retina. 2017;37(4):643–50.

    Article  CAS  PubMed  Google Scholar 

  61. Parolini B, Schumann RG, Cereda MG, Haritoglou C, Pertile G. Lamellar macular hole: a clinicopathologic correlation of surgically excised epiretinal membranes. Invest Ophthalmol Vis Sci. 2011;52(12):9074–83.

    Article  PubMed  Google Scholar 

  62. Bottoni F, Deiro AP, Giani A, Orini C, Cigada M, Staurenghi G. The natural history of lamellar macular holes: a spectral domain coherence tomography study. Graefes Arch Clin Ophthalmol. 2013;251(2):467–75.

    Article  Google Scholar 

  63. Schumann RG, Compera D, Schaumberger MM, Wolf A, Fazekas C, Mayer WJ, et al. Epiretinal membrane characteristics correlate with photoreceptor layer defects in lamellar macular holes and macular pseudoholes. Retina. 2015;35(4):727–35.

    Article  PubMed  Google Scholar 

  64. Compera D, Entchev E, Haritoglou C, Mayer WJ, Hagenau F, Ziada J, et al. Correlative microscopy of lamellar hole-associated epiretinal proliferation. J Ophthalmol. 2015;2015:450212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Govetto A, Dacquay Y, Farajzadeh M, Platner E, Hirabayashi K, Hosseini H, et al. Lamellar macular hole: two distinct clinical entities? Am J Ophthalmol. 2016;164:99–109.

    Article  PubMed  Google Scholar 

  66. Kishi S, Demaria C, Shimizu K. Vitreous cortex remnants at the fovea after spontaneous vitreous detachment. Int Ophthalmol. 1986;9:253–60.

    Article  CAS  PubMed  Google Scholar 

  67. Pang CE, Spaide RF, Freund KB. Comparing functional and morphologic characteristics of lamellar macular holes with and without lamellar hole-associated epiretinal proliferation. Retina. 2015;35(4):720–6.

    Article  PubMed  Google Scholar 

  68. Messmer EM, Heidenkummer HP, Kampik A. Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol. 1998;236:248–54.

    Article  CAS  PubMed  Google Scholar 

  69. Ishida S, Yamakazi K, Shinoda K, Kawashima S, Oguchi Y. Macular hole retinal detachment in highly myopic eyes: ultrastructure of epiretinal membrane and clinicopathological correlation. Retina. 2000;20:176–83.

    Article  CAS  PubMed  Google Scholar 

  70. Arevalo JF, Sanchez JG, Costa RA, et al. Optical coherence tomography characteristics of full-thickness traumatic macular holes. Eye (Lond). 2008;22:1436–41.

    Article  CAS  Google Scholar 

  71. Rossi T, Boccassini B, Esposito L, et al. The pathogenesis of retinal damage in blunt eye trauma: finite element modeling. Invest Ophthalmol Vis Sci. 2011;52:3994–4002.

    Article  PubMed  Google Scholar 

  72. Weichel ED, Colyer MH. Traumatic macular holes secondary to combat ocular trauma. Retina. 2009;29(3):349–54.

    Article  PubMed  Google Scholar 

  73. Ripandelli G, Rossi T, Scarinci F, et al. Macular vitreoretinal interface abnormalities in highly myopic eyes with posterior staphyloma: 5-year follow-up. Retina. 2012;32:1531–8.

    Article  PubMed  Google Scholar 

  74. Singh AJ, Muqit MM, Woon WH. Is axial length a risk factor for idiopathic macular hole formation? Int Ophthalmol. 2012;32:393–6.

    Article  CAS  PubMed  Google Scholar 

  75. Chaudhry NA, Tabandeh H, Flynn HW Jr, Konjara V, Liggett PE. Spontaneous development and closure of full thickness macular hole during intravitreal anti-VEGFf therapy for neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(14):858.

    Google Scholar 

  76. Kabanarou SA, Xirou T, Mangouritsas G, Garnavou-Xirou C, Boutouri E, Gkizis I, Chatziralli I. Full-thickness macular hole formation following anti-VEGF injections for neovascular age-related macular degeneration. Clin Interv Aging. 2017;12:911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shukla D. Evolution and management of macular hole secondary to type 2 idiopathic macular telangiectasia [letter]. Eye (Lond). 2011;25:532–3.

    Article  CAS  Google Scholar 

  78. Fabian ID, Moisseiev E, Moisseiev J, et al. Macular hole after vitrectomy for primary rhegmatogenous retinal detachment. Retina. 2012;32:511–9.

    Article  PubMed  Google Scholar 

  79. Garcia-Arumi J, Boixadera A, Martinez-Castillo V, et al. Macular holes after rhegmatogenous retinal detachment repair: surgical management and functional outcome. Retina. 2011;31:1777–82.

    Article  PubMed  Google Scholar 

  80. Schadlu R, Tehrani S, Shah GK, Prasad AG. Long-term follow-up results of ilm peeling during vitrectomy surgery for premacular fibrosis. Retina. 2008;28:853–7.

    Article  PubMed  Google Scholar 

  81. Bainbridge J, Herbert E, Gregor Z. Macular holes: vitreoretinal relationships and surgical approaches. Eye. 2008;22:1301–9.

    Article  CAS  PubMed  Google Scholar 

  82. Gass JDM. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol. 1988;106:629–39.

    Article  CAS  PubMed  Google Scholar 

  83. Akiba J, Quiroz MA, Trempe CL. Role of posterior vitreous detachment in idiopathic macular holes. Ophthalmology. 1990;97:1610–3.

    Article  CAS  PubMed  Google Scholar 

  84. Ezra E, Munro PM, Charteris DG, Aylward WG, Luthert PJ, Gregor ZJ. Macular hole opercula. Ultrastructural features and clinicopathological correlation. Arch Ophthalmol. 1997;115:1381–7.

    Article  CAS  PubMed  Google Scholar 

  85. Muqit MMK, Hamilton R, Ho J, Tucker S, Buck H. Intravitreal ocriplasmin for the treatment of vitreomacular traction and macular hole—a study of efficacy and safety based on NICE guidance. PLoS One. 2018;13(5):e0197072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mein C, Dugel PU, Feiner L, et al. Patient-reported visual function from the Ocriplasmin for treatment for symptomatic vitreomacular adhesion, including macular hole (OASIS) study. Retina. 2020;40(7):1331–8.

    Article  PubMed  Google Scholar 

  87. Han R, Zhang C, Zhao X, Chen Y. Treatment of primary full-thickness macular hole by intravitreal injection of expansile gas. Eye (Lond). 2019;33(1):136–43.

    Article  Google Scholar 

  88. Chen TC, Yang CH, Yang CM. Intravitreal expansile gas in the treatment of early macular hole: reappraisal. Ophthalmologica. 2012;228:159–66.

    Article  PubMed  Google Scholar 

  89. Allen AW Jr, Gass JD. Contraction of a perifoveal epiretinal membrane simulating a macular hole. Am J Ophthalmol. 1976;82:684–91.

    Article  PubMed  Google Scholar 

  90. Toomes C, Bottomley HM, Scott S, Mackey DA, Craig JE, Appukuttan B, et al. Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2004;45:2083–90.

    Article  PubMed  Google Scholar 

  91. Robitaille JM, Zheng B, Wallace K, et al. The role of Frizzled-4 mutations in familial exudative vitreoretinopathy and Coats disease. Br J Ophthalmol. 2011;95:574–9.

    Article  PubMed  Google Scholar 

  92. Gilmour DF. Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond). 2015;29:1–14.

    Article  CAS  Google Scholar 

  93. Jiao X, Ventruto V, Trese MT, et al. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet. 2004;75:878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poulter JA, Ali M, Gilmour DF, et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet. 2010;86:248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Poulter JA, Davidson AE, Ali M, et al. Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR). Invest Ophthalmol Vis Sci. 2012;53:2873–9.

    Article  CAS  PubMed  Google Scholar 

  96. Collin RWJ, Nikopoulos K, Dona M, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci U S A. 2013;110:9856–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Warden SM, Andreoli CM, Mukai S. The Wnt signalling pathway in familial exudative vitreoretinopathy and Norrie disease. Semin Ophthalmol. 2007;22:211–7.

    Article  PubMed  Google Scholar 

  98. Kashani AH, Learned D, Nudleman E, et al. High prevalence of peripheral retinal vascular anomalies in family members of patients with familial exudative vitreoretinopathy. Ophthalmology. 2014;121:262–8.

    Article  PubMed  Google Scholar 

  99. Ranchod TM, Ho LY, Drenser KA, et al. Clinical presentation of familial exudative vitreoretinopathy. Ophthalmology. 2011;118:2070–5.

    Article  PubMed  Google Scholar 

  100. Boldrey EE, Egbert P, Gass JDM, Friberg T. The histopathology of familial exudative vitreoretinopathy. Arch Ophthalmol. 1985;103:238–41.

    Article  CAS  PubMed  Google Scholar 

  101. Glazer LC, Maguire A, Blumenkranz MS, Trese MT, Green WR. Improved surgical treatment of familial exudative vitreoretinopathy. Am J Ophthalmol. 1995;120:471–9.

    Article  CAS  PubMed  Google Scholar 

  102. Tauqeer Z, Yonekawa Y. Familial exudative vitreoretinopathy: pathophysiology, diagnosis, and management. Asia Pac J Ophthalmol (Phila). 2018;7(3):176–82.

    CAS  Google Scholar 

  103. Kashani AH, Brown KT, Chang E, et al. Diversity of retinal vascular anomalies in patients with familial exudative vitreoretinopathy. Ophthalmology. 2014;121:2220–7.

    Article  PubMed  Google Scholar 

  104. Goodwin P. Hereditary retinal disease. Curr Opin Ophthalmol. 2008;19:255–62.

    Article  PubMed  Google Scholar 

  105. Rao P, Dedania VS, Drenser KA. Congenital X-linked retinoschisis: an updated clinical review. Asia Pac J Ophthalmol (Phila). 2018;7(3):169–75.

    CAS  Google Scholar 

  106. Mooy CM, Baarsma S, Paridaens DA, Bergen A, Weber BHF. Hereditary X-linked juvenile retinoschisis: a review of the role of Muller cells. Arch Ophthalmol. 2002;120:979–84.

    PubMed  Google Scholar 

  107. Prenner JL, Capone A Jr, Ciaccia S, et al. Congenital X-linked retinoschisis classification system. Retina. 2006;26:S61–4.

    Article  PubMed  Google Scholar 

  108. Verbakel SK, van de Ven JP, Le Blanc LM, et al. Carbonic anhydrase inhibitors for the treatment of cystic macular lesions in children with x-linked juvenile retinoschisis. Invest Ophthalmol Vis Sci. 2016;57:5143–7.

    Article  CAS  PubMed  Google Scholar 

  109. Sadaka A, Sisk RA. Dramatic regression of macular and peripheral retinoschisis with dorzolamide 2% in X-linked retinoschisis: a case report. J Med Case Rep. 2016;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ali S, Seth R. X-linked juvenile retinoschisis in females and response to carbonic anhydrase inhibitors: case report and review of the literature. Semin Ophthalmol. 2013;28:50–4.

    Article  PubMed  Google Scholar 

  111. Iordanous Y, Sheidow TG. Vitrectomy for X-linked retinoschisis: a case report and literature review. Can J Ophthalmol. 2013;48:e71–4.

    Article  PubMed  Google Scholar 

  112. Yu H, Li T, Luo Y, et al. Long-term outcomes of vitrectomy for progressive X-linked retinoschisis. Am J Ophthalmol. 2012;154:394–402.

    Article  PubMed  Google Scholar 

  113. Snead MP, Yates JR. Clinical and molecular genetics of Stickler syndrome. J Med Genet. 1999;36:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Robin NH, Moran RT, Ala-Kokko L. Stickler syndrome. https://www.ncbi.nlm.nih.gov/pubmed/20301479. Accessed 16 Sept 2020.

  115. Snead MP, McNinch AM, Poulson AV, Bearcroft P, Silverman B, Gomersall P, Parfect V, Richards AJ. Stickler syndrome, ocular-only variants and a key diagnostic role for the ophthalmologist. Eye. 2011;25:1389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, Suzuki H, Smets RM, Vanhoenacker F, Declau F, et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet. 2006;79:449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, Ala-Kokko L. A loss of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. Am J Med Genet A. 2011;155A:1668–72.

    Article  PubMed  CAS  Google Scholar 

  118. Faletra F, D’Adamo AP, Bruno I, Athanasakis E, Biskup S, Esposito L, Gasparini P. Autosomal recessive Stickler syndrome due to a loss of function mutation in the COL9A3 gene. Am J Med Genet A. 2014;164:42–7.

    Article  CAS  Google Scholar 

  119. Ahmad NN, Ala-Kokko L, Knowlton RG, Jimenez SA, Weaver EJ, Maguire JI, Tasman W, Prockop DJ. Stop codon in the procollagen II gene (COL2A1) in a family with the Stickler syndrome (arthro-ophthalmopathy). Proc Natl Acad Sci U S A. 1991;88:6624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD, Snead MP. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet. 1996;5:1339–43.

    Article  CAS  PubMed  Google Scholar 

  121. Sirko-Osadsa DA, Murray MA, Scott JA, Lavery MA, Warman ML, Robin NH. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J Pediatr. 1998;132:368–71.

    Article  CAS  PubMed  Google Scholar 

  122. Hoornaert KP, Vereecke I, Dewinter C, Rosenberg T, Beemer FA, Leroy JG, Bendix L, Bjorck E, Bonduelle M, Boute O, et al. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients. Eur J Hum Genet. 2010;18:872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. MacRae ME, Patel DV, Richards AJ, Snead MP, Tomie J, Lee WR. Type 1 Stickler syndrome: a histological and ultrastructural study of an untreated globe. Eye. 2006;20:1061–7.

    Article  CAS  PubMed  Google Scholar 

  124. Seery CM, Pruett RC, Liberfarb RM, Cohen BZ. Distinctive cataract in the Stickler syndrome. Am J Ophthalmol. 1990;110:143–8.

    Article  CAS  PubMed  Google Scholar 

  125. Boothe M, Morris R, Robin N. Stickler syndrome: a review of clinical manifestations and the genetics evaluation. J Pers Med. 2020;10(3):E105.

    Article  PubMed  Google Scholar 

  126. O’Malley PF, Allen RA, Straatsma BR, O’Malley CC. Paving stone degeneration of the retina. Arch Ophthalmol. 1965;73:169–82.

    Article  PubMed  Google Scholar 

  127. Daicker B. The macular fatty degeneration of the peripheral retina. Albrecht Von Graefes Arch Ophthalmol. 1978;205:147–55.

    Article  CAS  Google Scholar 

  128. Meyer E, Kurz GH. Retinal pits: a study of pathological findings in two cases. Arch Ophthalmol. 1963;70:640–6.

    Article  CAS  PubMed  Google Scholar 

  129. To KW, Adamian M, Jakobiec FA, Berson EL. Clinical and histopathologic findings in clumped pigmentary retinal degeneration. Arch Ophthalmol. 1996;114:950–5.

    Article  PubMed  Google Scholar 

  130. Schorderet DF, Escher P. NR2E3 mutations in enhanced S-cone sensitive syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum Mutat. 2009;30:1475–85.

    Article  CAS  PubMed  Google Scholar 

  131. Foos RY, Freeman SS. Reticular cystoid degeneration of the peripheral retina. Am J Ophthalmol. 1970;69:392–403.

    Article  CAS  PubMed  Google Scholar 

  132. Straatsma BR, Foos RY. Typical and reticular degenerative retinoschisis. Am J Ophthalmol. 1973;75:551–75.

    Article  CAS  PubMed  Google Scholar 

  133. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739–48.

    Article  PubMed  Google Scholar 

  134. Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res. 2019;188:107778.

    Article  CAS  PubMed  Google Scholar 

  135. Wickham L, Sethi CS, Lewis GP, Fisher SK, McLEod DC, Charteris DG. Glial and neural response in short-term human retinal detachment. Arch Ophthalmol. 2006;124:1779–81.

    Article  PubMed  Google Scholar 

  136. Lewis GP, Fisher SK. Müller cell outgrowth after retinal detachment: association with cone photoreceptors. Invest Ophthalmol Vis Sci. 2000;41:1542–5.

    CAS  PubMed  Google Scholar 

  137. Fisher SK, Lewis GP, Linberg KA, Verardo MR. Cellular remodelling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res. 2005;24:395–431.

    Article  PubMed  Google Scholar 

  138. Monshizadeh R, Samiy N, Haimovici R. Management of retained intravitreal lens fragments after cataract surgery. Surv Ophthalmol. 1999;43:397–404.

    Article  CAS  PubMed  Google Scholar 

  139. D’hermies F, Korobelnik JF, Chauvaud D, Pouliquen Y, Parel JM, Renard G. Scleral and episcleral histological changes related to encircling explants in 20 eyes. Acta Ophthalmol Scand. 1999;77:279–85.

    Article  PubMed  Google Scholar 

  140. O’Donoghue E, Lightman S, Tuft S, Watson P. Surgically induced necrotising sclerokeratitis (SINS)-precipitating factors and response to treatment. Br J Ophthalmol. 1992;76:17–21.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nakamura K, Refojo MF, Crabtree DV, Leong FL. Analysis and fractionation of silicone oil and fluorosilicone oils for intraocular use. Invest Ophthalmol Vis Sci. 1990;31:2059–69.

    CAS  PubMed  Google Scholar 

  142. Yang CS, Chen KH, Hsu WM, Li YS. Cytotoxicity of silicone oil on cultivated human corneal endothelium. Eye. 2008;22:282–8.

    Article  CAS  PubMed  Google Scholar 

  143. Foulks GN, Hatchell DL, Proia AD, Klintworth GK. Histopathology of silicone oil keratopathy in humans. Cornea. 1991;10:29–37.

    Article  CAS  PubMed  Google Scholar 

  144. Azuara-Blanco A, Dua HS, Pillai CT. Pseudoendothelial dystrophy associated with emulsified silicon oil. Cornea. 1999;18:493–4.

    Article  CAS  PubMed  Google Scholar 

  145. Eckardt C, Nicolai U, Czank M, Schmidt D. Identification of silicone oil in the retina after intravitreal injection. Retina. 1992;12:S17–22.

    Article  CAS  PubMed  Google Scholar 

  146. Eller AW, Friberg TR, Mah F. Migration of silicone oil into the brain: a complication of intraocular silicone oil for retinal tamponade. Am J Ophthalmol. 2000;129:685–8.

    Article  CAS  PubMed  Google Scholar 

  147. Heimann H, Stappler T, Wong D. Heavy tamponade 1: a review of indications, use and complications. Eye. 2008;22:1342–59.

    Article  CAS  PubMed  Google Scholar 

  148. Ozdek S, Yuksel N, Gurelik G, Hasanreisoglu B. High-density silicone oil as an intraocular tamponade in complex retinal detachments. Can J Ophthalmol. 2011;46(1):51–5.

    Article  PubMed  Google Scholar 

  149. Hiscott P, Magee RM, Colthurs M, Lois N, Wong D. Clinicopathological correlation of epiretinal membranes and posterior lens opacification following perfluorohexyloctane tamponade. Br J Ophthalmol. 2001;85:179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jiang Y, Oh DJ, Messenger W, Lim JI. Outcomes of 25-gauge vitrectomy with relaxing retinectomy for retinal detachment secondary to proliferative vitreoretinopathy. J Vitreoretin Dis. 2019;3(2):69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Federman JL, Eagle RC. Extensive peripheral retinectomy combined with posterior 360 degrees retinopathy for retinal reattachment in advanced proliferative vitreoretinopathy cases. Ophthalmology. 1990;97:1305–20.

    Article  CAS  PubMed  Google Scholar 

  152. Wong D, Lois N. Foveal relocation by redistribution of the neurosensory retina. Br J Ophthalmol. 2000;84:352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Eandi CM, Giansanti F, Virgili G. Macular translocation for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2008;4:CD006928.

    Google Scholar 

  154. Tosi GM, Traversi C, Schuerfeld K, Mittica V, Massaro-Giordano M, Tilanus MA, Caporossi A, Toti P. Amniotic membrane graft: histopathological findings in five cases. J Cell Physiol. 2005;202:852–7.

    Article  CAS  PubMed  Google Scholar 

  155. Tosi GM, Massaro-Giordano M, Caporossi A, Toti P. Amniotic membrane transplantation in ocular surface disorders. J Cell Physiol. 2005;202:849–51.

    Article  CAS  PubMed  Google Scholar 

  156. Kheirkhah A, Blanco G, Casas V, Hayashida Y, Raju VK, Tseng SC. Surgical strategies for fornix reconstruction based on symblepharon severity. Am J Ophthalmol. 2008;146:266–75.

    Article  PubMed  Google Scholar 

  157. Niknejad H, Yazdanpanah G, Kakavand M. Extract of fetal membrane would inhibit thrombosis and hemolysis. Med Hypotheses. 2015;85:197–202.

    Article  CAS  PubMed  Google Scholar 

  158. Tehrani FA, Ahmadiani A, Niknejad H. The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology. 2013;67:293–8.

    Article  CAS  PubMed  Google Scholar 

  159. Rizzo S, Caporossi T, Tartaro R, Finocchio L, Franco F, Barca F, Giansanti F. A human amniotic membrane plug to promote retinal breaks repair and recurrent macular hole closure. Retina. 2019;39(Suppl. 1):S95–S103.

    Article  PubMed  Google Scholar 

  160. Caporossi T, Tartaro R, De Angelis L, Pacini B, Rizzo S. A human amniotic membrane plug to repair retinal detachment associated with large macular tear. Acta Ophthalmol. 2019;97:821–3.

    Article  CAS  PubMed  Google Scholar 

  161. Caporossi T, De Angelis L, Pacini B, Tartaro R, Finocchio L, Barca F, Rizzo S. A human amniotic membrane plug to manage high myopic macular hole associated with retinal detachment. Acta Ophthalmol. 2020;98:e252–6.

    Article  CAS  PubMed  Google Scholar 

  162. Caporossi T, De Angelis L, Pacini B, Rizzo S. Amniotic membrane for retinal detachment due to paravascular retinal breaks over patchy chorioretinal atrophy in pathologic myopia. Eur J Ophthalmol. 2020;30:392–5.

    Article  PubMed  Google Scholar 

  163. Rizzo S, Caporossi T, Pacini B, De Angelis L, De Vitto ML, Gainsanti F. Management of optic disk pit-associated macular detachment with human amniotic membrane patch. Retina. 2020;2020. https://doi.org/10.1097/IAE.0000000000002753.

  164. Rizzo S, Caporossi T, Tartaro R, et al. Human amniotic membrane plug to restore age-related macular degeneration photoreceptor damage [published online ahead of print, 2020 Apr 25]. Ophthalmol Retina. 2020;S2468–6530(20)30170–6. https://doi.org/10.1016/j.oret.2020.04.017.

  165. Hiscott P, Wong D, Grierson I. Challenges in ophthalmic pathology: the vitreoretinal membrane biopsy. Eye. 2000;14:549–59.

    Article  PubMed  Google Scholar 

  166. Snead DRJ, James S, Snead MP. Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye. 2008;22:1310–7.

    Article  CAS  PubMed  Google Scholar 

  167. Iannetti L, Accorinti M, Malagola R, Bozzoni-Pantaleoni F, Da Dalt S, Nicoletti F, et al. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2011;52(8):5786–9.

    Article  CAS  PubMed  Google Scholar 

  168. Kampik A, Kenyon KR, Michels RG, Green WR, de la Cruz ZC. Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol. 1981;99(8):1445–54.

    Article  CAS  PubMed  Google Scholar 

  169. Duan XR, Liang YB, Friedman DS, Sun LP, Wei WB, Wang JJ, et al. Prevalence and associations of epiretinal membranes in a rural Chinese adult population: the Handan Eye Study. Invest Ophthalmol Vis Sci. 2009;50(5):2018–23.

    Article  PubMed  Google Scholar 

  170. Oberstein SY, Byun J, Herrera D, Chapin EA, Fisher SK, Lewis GP. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration. Mol Vis. 2011;17:1794–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Koh V, Cheung CY, Wong WL, Cheung CM, Wang JJ, Mitchell P, et al. Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci. 2012;53(2):1018–22.

    Article  PubMed  Google Scholar 

  172. Hiscott PS, Grierson I, Trombetta CJ, Rahi AH, Marshall J, McLeod D. Retinal and epiretinal glia—an immunohistochemical study. Br J Ophthalmol. 1984;68(10):698–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sramek SJ, Wallow IH, Stevens TS, Nork TM. Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology. 1989;96(6):835–41.

    Article  CAS  PubMed  Google Scholar 

  174. Guidry C, King JL, Mason JO III. Fibrocontractive Müller cell phenotypes in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(4):1929–39.

    Article  PubMed  Google Scholar 

  175. Kohno RI, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93(8):1020–6.

    Article  PubMed  Google Scholar 

  176. Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, et al. Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res. 2006;83(1):212–22.

    Article  CAS  PubMed  Google Scholar 

  177. Shinoda K, Hirakata A, Hida T, Yamaguchi Y, Fukuda M, Maekawa S, et al. Ultrastructural and immunohistochemical findings in five patients with vitreomacular traction syndrome. Retina. 2000;20(3):289–93.

    Article  CAS  PubMed  Google Scholar 

  178. Gandorfer A, Rohleder M, Kampik A. Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol. 2002;86(8):902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Okada M, Ogino N, Matsumura M, Honda Y, Nagai Y. Histological and immunohistochemical study of idiopathic epiretinal membrane. Ophthalmic Res. 1995;27(2):118–28.

    Article  CAS  PubMed  Google Scholar 

  180. Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.

    Article  CAS  PubMed  Google Scholar 

  181. Wang LC, Hung KH, Hsu CC, Chen SJ, Li WY, Lin TC. Assessment of retinal pigment epithelial cells in epiretinal membrane formation. J Chin Med Assoc. 2015;78(6):370–3.

    Article  PubMed  Google Scholar 

  182. Romaniuk D, Kimsa MW, Strzalka-Mrozik B, Kimsa MC, Kabiesz A, Romaniuk W, et al. Gene expression of IGF1, IGF1R, and IGFBP3 in epiretinal membranes of patients with proliferative diabetic retinopathy: preliminary study. Mediators Inflamm. 2013;2013:986217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Yamaji Y, Yoshida S, Ishikawa K, Sengoku A, Sato K, Yoshida A, et al. TEM7 (PLXDC1) in neovascular endothelial cells of fibrovascular membranes from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49(7):3151–7.

    Article  PubMed  Google Scholar 

  184. Kritzenberger M, Junglas B, Framme C, Helbig H, Gabel VP, Fuchshofer R, et al. Different collagen types define two types of idiopathic epiretinal membranes. Histopathology. 2011;58(6):953–65.

    Article  PubMed  Google Scholar 

  185. Harada C, Mitamura Y, Takayuki H. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res. 2006;25:149–64.

    Article  CAS  PubMed  Google Scholar 

  186. Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade developments on epiretinal membrane pathogenesis. Med Hypothesis Discov Innov Ophthalmol. 2020;9(2):91–110.

    PubMed  PubMed Central  Google Scholar 

  187. Coupland SE. The pathologist’s perspective on vitreous opacities. Eye. 2008;22:1318–29.

    Article  CAS  PubMed  Google Scholar 

  188. Scott JA, Damato BE, Smith PA, Gurney PWV. Scleral explant mimicking malignant melanoma. Eye. 1994;8:606–8.

    Article  PubMed  Google Scholar 

  189. Kador PR, Wyman M. Asteroid hyalosis: pathogenesis and prospects for prevention. Eye. 2008;22:1278–85.

    Article  CAS  PubMed  Google Scholar 

  190. Khoshnevis M, Rosen S, Sebag J. Asteroid hyalosis—a comprehensive review. Surv Ophthalmol. 2019;64(4):452–62.

    Article  PubMed  Google Scholar 

  191. Winckler J, Lundsdorf H. Ultrastructure and composition of asteroid bodies. Invest Ophthalmol Vis Sci. 2001;42:902–7.

    Google Scholar 

  192. Komatsu H, Kamura Y, Ishi K, Kashima Y. Fine structure and morphogenesis of asteroid hyalosis. Med Electron Microsc. 2003;36:112–9.

    Article  PubMed  Google Scholar 

  193. Sehu KW, Lee WR, editors. Ophthalmic pathology: an illustrated guide for clinicians. Malden: Blackwell; 2008. ISBN 9780727917799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, F., Thum, C.K. (2021). Treatment of Retinal Detachment. In: Lee's Ophthalmic Histopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-76525-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76525-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76524-8

  • Online ISBN: 978-3-030-76525-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics