Skip to main content

Absolute Glaucoma

  • Chapter
  • First Online:
Lee's Ophthalmic Histopathology
  • 821 Accesses

Abstract

Glaucoma is a generic term used to describe diseases in which the intraocular pressure is at a level sufficient to cause damage to the tissues within an individual eye, resulting in “glaucomatous optic neuropathy”. Around 30% of the globes received in the laboratory will have been enucleated due to failed treatment for glaucoma. Glaucoma may be classified as primary open angle, primary acute angle closure, congenital glaucoma and secondary glaucoma where the chamber angle may be closed due to a fibrovascular membrane or where the chamber angle is open but the trabecular meshwork is blocked (e.g. with blood or tumour cells). A rapid rise in intraocular pressure will result in acute ischaemic damage to ocular tissues and may cause infarction in the optic nerve. A chronic sustained raised intraocular pressure leads to atrophy of intraocular tissues with loss of the ganglion cell layer of the retina and the prelaminar region of the optic nerve with bowing of the lamina cribrosa posteriorly. The changes of surgical intervention will also usually be evident in enucleation specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiose Y. Intraocular pressure: new perspectives. Surv Ophthalmol. 1990;34:413–5.

    Article  CAS  PubMed  Google Scholar 

  2. Caprioli J. The ciliary epithelia and aqueous humour. In: Hart WM, editor. Adler’s physiology of the eye. St. Louis, MO; Washington, DC; Toronto, ON: CV Mosby; 1992. p. 228–47.

    Google Scholar 

  3. Iwamoto Y, Tamura M. Immunocytochemical study of intermediate filaments in cultured human trabecular cells. Invest Ophthalmol Vis Sci. 1988;29:244–50.

    CAS  PubMed  Google Scholar 

  4. Yue BYTJ. The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol. 1996;40:379–90.

    Article  CAS  PubMed  Google Scholar 

  5. Toris CB, Yablonski ME, Wang Y-L, Camras CB. Aqueous humour dynamics in the aging human eye. Am J Ophthalmol. 1999;127:407–12.

    Article  CAS  PubMed  Google Scholar 

  6. Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci. 1991;32:160–71.

    CAS  PubMed  Google Scholar 

  7. Ainsworth JR, Lee WR. Effects of age and high pressure fixation on the lining endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1990;31:745–50.

    CAS  PubMed  Google Scholar 

  8. Wilson MR. The myth of “21”. J Glaucoma. 1997;6:75–7.

    CAS  PubMed  Google Scholar 

  9. Mudumbai RC. Clinical update on normal tension glaucoma. Semin Ophthalmol. 2013;28:173–9.

    Article  PubMed  Google Scholar 

  10. Sun X, Dai Y, Chen Y, Yu DY, Cringle SJ, Chen J, Kong X, Wang X, Jiang C. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.

    Article  PubMed  Google Scholar 

  11. Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009;360:1113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Johnson DH. mRNA in situ hybridization of TIGR/MYOC in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2000;41:1724–9.

    CAS  PubMed  Google Scholar 

  13. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295:1077–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8:e1002654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Civan MM. Formation of the aqueous humor: transport component and their integration. In: Civan MM, editor. The eye’s aqueous humor, vol. 62. 2nd ed. San Diego, CA: Elsevier, Inc; 2008. p. 1–45.

    Google Scholar 

  17. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. A review. JAMA. 2014;311:1901–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kinori M, Hostovsky A, Skaat A, Schwartsman J, Melamed S. A novel method for quantifying the amount of trabecular meshwork pigment in glaucomatous and nonglaucomatous eyes. J Glaucoma. 2014;1:e13–7.

    Article  Google Scholar 

  19. Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41:619–23.

    CAS  PubMed  Google Scholar 

  20. Izzotti A, Bagnis A, Saccà SC. The role of oxidative stress in glaucoma. Mutat Res. 2006;612(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  21. Saccà SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84:389–99.

    Article  PubMed  CAS  Google Scholar 

  22. Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci. 2014;71:2197–218.

    Article  PubMed  CAS  Google Scholar 

  23. Hogg P, Calthorpe M, Batterbury M, Grierson I. Aqueous humor stimulates the migration of human trabecular meshwork cells in vitro. Invest Ophthalmol Vis Sci. 2000;41:1091–8.

    CAS  PubMed  Google Scholar 

  24. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91:564–79.

    Article  CAS  PubMed  Google Scholar 

  25. Grierson I. What is open angle glaucoma? Eye. 1987;1:15–28.

    Article  PubMed  Google Scholar 

  26. Lutjen-Drecoll E, Rittig M, Rauterberg EA. Immunomicroscopical study of type VI collagen in the trabecular meshwork of normal and glaucomatous eyes. Exp Eye Res. 1989;48:139–47.

    Article  CAS  PubMed  Google Scholar 

  27. Sihota R, Goyal A, Kaur J, Gupta V, Nag TC. Scanning electron microscopy of the trabecular meshwork: understanding the pathogenesis of primary angle closure glaucoma. Indian J Ophthalmol. 2012;60(3):183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vranka J, Kelley M, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86:543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I. Ultrastructure of the trabecular meshwork in untreated cases of primary open angle glaucoma. Exp Eye Res. 1993;56:683–92.

    Article  CAS  PubMed  Google Scholar 

  31. Killer HE, Pircher A. Normal tension glaucoma: a review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 2018;32:924–30.

    Article  CAS  Google Scholar 

  32. Tarkkanen AH, Kivelä TT. Vascular comorbidity in patients with low-tension glaucoma. Eur J Ophthalmol. 2014;24:869–72.

    Article  PubMed  Google Scholar 

  33. Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Cuacasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95:e524–31.

    Article  PubMed  Google Scholar 

  34. Rao A, Padhy D, Das G, Sarangi S. Evolving paradigms in classification of primary angle closure glaucoma. Semin Ophthalmol. 2017;32:228–36.

    Article  PubMed  Google Scholar 

  35. Sun X, Dai Y, Chen Y, Yu DY, Cringle SJ, Chen J, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.

    Article  PubMed  Google Scholar 

  36. Wright C, Tawfik MA, Waisbourd M, Katz LJ. Primary angle-closure glaucoma: an update. Acta Ophthalmol. 2016;94:217–25.

    Article  PubMed  Google Scholar 

  37. Lowe RF. Etiology of the anatomical basis for primary angle closure glaucoma. Br J Ophthalmol. 1970;54:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee WR. The pathology of the outflow system in primary and secondary glaucoma. Eye. 1995;9:1–23.

    Article  PubMed  Google Scholar 

  39. Lai J, Choy BN, Shum BW. Management of primary angle-closure glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5:59–62.

    Article  Google Scholar 

  40. Tripathy BJ, Tripathy RC. Neural crest origin of human trabecular meshwork and its implications for the pathogenesis of glaucoma. Am J Ophthalmol. 1989;107:583–90.

    Article  Google Scholar 

  41. Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51:213–31.

    Article  PubMed  Google Scholar 

  42. Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye. 2007;21:1310–8.

    Article  CAS  PubMed  Google Scholar 

  43. Perry LP, Jakobiec FA, Zakka FR, Walton DS. Newborn primary congenital glaucoma: histopathologic features of the anterior chamber filtration angle. J AAPOS. 2012;16(6):565–8.

    Article  PubMed  Google Scholar 

  44. Chan JYY, Choy BNK, Ng ALK, Shum JWH. Review on the management of primary congenital glaucoma. J Curr Glaucoma Pract. 2015;9:92–9.

    Article  Google Scholar 

  45. Hollander DA, Sarfarazi M, Stoilov I, Wood IS, Fredrick DR, Alvarado JA. Genotype and phenotype correlations in congenital glaucoma. Trans Am Ophthalmol Soc. 2006;104:183–95.

    PubMed  PubMed Central  Google Scholar 

  46. Tawara A, Inomata H. Distribution and characterisation of sulfated proteoglycans in the trabecular tissue of goniodysgenetic glaucoma. Am J Ophthalmol. 1994;117:741–55.

    Article  CAS  PubMed  Google Scholar 

  47. Furuyoshi N, Furuyoshi M, Futa R, Gottanka J, Lutjen-Drecoll E. Ultrastructural changes in the trabecular meshwork of juvenile glaucoma. Ophthalmologica. 1997;211:140–6.

    Article  CAS  PubMed  Google Scholar 

  48. Katai N, Urakawa Y, Sato Y, Miyanaga K, Segawa K, Yoshimura N. CHARGE association with congenital glaucoma due to maldevelopment of the anterior chamber angle. Acta Ophthalmol Scand. 1997;75:322–4.

    Article  CAS  PubMed  Google Scholar 

  49. Tawara A, Inomata H. Developmental immaturity of the trabecular meshwork in juvenile glaucoma. Am J Ophthalmol. 1984;98:82–97.

    Article  CAS  PubMed  Google Scholar 

  50. Moorthy RS, Mermoud A, Baerveldt G, Minckler DS, Lee PP, Rao NA. Glaucoma associated with uveitis. Surv Ophthalmol. 1997;41:361–94.

    Article  CAS  PubMed  Google Scholar 

  51. Kuchtey RW, Lowder CY, Smith SD. Glaucoma in patients with ocular inflammatory disease. Ophthalmol Clin N Am. 2005;18:421–30.

    Article  Google Scholar 

  52. Overby DR, Clark AF. Animal models of glucocorticoid-induced glaucoma. Exp Eye Res. 2015;141:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Camras LJ, Stamer WD, Epstien D, Gonzalez P, Yuan F. Circumferential tensile stiffness of glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci. 2014;55:814–23.

    Article  PubMed  Google Scholar 

  54. Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.

    Article  CAS  PubMed  Google Scholar 

  55. Ichhpujani P, Jindal A, Katz LJ. Silicone oil induced glaucoma: a review. Graefes Arch Clin Exp Ophthalmol. 2009;247:1585–93.

    Article  CAS  PubMed  Google Scholar 

  56. Scuderi G, Contestabile MT, Scuderi L, Librando A, Fenaicia V, Rahimi S. Pigment dispersion syndrome and pigmentary glaucoma: a review and update. Int Ophthalmol. 2019;39:1651–62.

    Article  PubMed  Google Scholar 

  57. Okafor K, Vinod K, Geddes SJ. Update on pigment dispersion syndrome and pigmentary glaucoma. Curr Opin Ophthalmol. 2017;28:154–60.

    Article  PubMed  Google Scholar 

  58. Niyadurupola N, Broadway DC. Pigment dispersion syndrome and pigmentary glaucoma—a major review. Clin Exp Ophthalmol. 2008;36:868–82.

    Article  PubMed  Google Scholar 

  59. Elhawy E, Kamthan G, Dong CQ, Danias J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 2012;6:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gottanka J, Johnson DH, Grehn F, Lütjen-Drecoll E. Histologic findings in pigment dispersion syndrome and pigmentary glaucoma. J Glaucoma. 2006;15:142–51.

    Article  PubMed  Google Scholar 

  61. Kampik A, Green WR, Quigley HA, Pierce LH. Scanning and transmission electron microscopic studies of two cases of pigment dispersion syndrome. Am J Ophthalmol. 1981;91:573–87.

    Article  CAS  PubMed  Google Scholar 

  62. McMenamin PG, Lee WR. Ultrastructural pathology of melanomalytic glaucoma. Br J Ophthalmol. 1986;70:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teichmann KD, Karcioglu ZA. Melanocytoma of the iris with rapidly developing secondary glaucoma. Surv Ophthalmol. 1995;40:136–44.

    Article  CAS  PubMed  Google Scholar 

  64. Fineman MS, Eagle RC, Shields JA, Shields CL, De Potter P. Melanomalytic glaucoma in eyes with necrotic iris melancytoma. Ophthalmology. 1998;105:492–6.

    Article  CAS  PubMed  Google Scholar 

  65. Mavrakanas N, Axmann S, Issum CV, Schutx JS, Shaarwy T. Phacolytic glaucoma: are there 2 forms? J Glaucoma. 2012;21:248–9.

    Article  PubMed  Google Scholar 

  66. Rosenbaum JT, Samples JR, Seymour B, Langlois L, David L. Chemotactic activity of lens proteins and the pathogenesis of phacolytic glaucoma. Arch Ophthalmol. 1987;105:1582–4.

    Article  CAS  PubMed  Google Scholar 

  67. Challa P. Genetics of pseudoexfoliation syndrome. Curr Opin Ophthalmol. 2009;20:88–91.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–400.

    Article  CAS  PubMed  Google Scholar 

  69. Asano N, Schlotzer-Schrehardt U, Naumann GOH. A histopathologic study of iris changes in pseudoexfoliation syndrome. Ophthalmology. 1995;102:1279–90.

    Article  CAS  PubMed  Google Scholar 

  70. Borrás T. The cellular and molecular biology of the iris, an overlooked tissue. J Glaucoma. 2014;23:S39–42.

    Article  PubMed  Google Scholar 

  71. Zenkel M, Schlötzer-Schrehardt U. Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome. J Glaucoma. 2014;23:S48–50.

    Article  PubMed  Google Scholar 

  72. Ritch R, Schlotzer-Schrehardt U. Exfoliation (pseudoexfoliation) syndrome: toward a new understanding. Proceedings of the first international think tank. Acta Ophthalmol Scand. 2001;79(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  73. Ovodenko B, Rostagno A, Neubert TA, Shetty V, Thomas S, Yang A, et al. Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci. 2007;48(4):1447–57.

    Article  PubMed  Google Scholar 

  74. Rasmussen CA, Kaufman PL. The trabecular meshwork in normal eyes and in exfoliation glaucoma. J Glaucoma. 2014;23:S15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Conway RM, Schlötzer-Schrehardt U, Küchle M, Naumann GO. Pseudoexfoliation syndrome: pathological manifestations of relevance to intraocular surgery. Clin Exp Ophthalmol. 2004;32:199–210.

    Article  PubMed  Google Scholar 

  76. Matsuo T. Photoreceptor outer segments in aqueous humour: key to understanding a new syndrome. Surv Ophthalmol. 1994;39:211–33.

    Article  CAS  PubMed  Google Scholar 

  77. Netland PA, Sizuo M, Covington HI. Elevated intraocular pressure secondary to rhegmatogenous retinal detachment. Surv Ophthalmol. 1994;39:234–40.

    Article  CAS  PubMed  Google Scholar 

  78. Matsuo T, Muraoka N, Shiraga F, Matsuo N. Schwartz-Matsuo-syndrome in retinal detachment with tears of the nonpigmented epithelium of the ciliary body. Acta Ophthalmol Scand. 1998;76:481–5.

    Article  CAS  PubMed  Google Scholar 

  79. Clark A, Alkhotani A, Yucel YH, Sylvester C, Kertes PJ, Birt CM. Electron microscopic evidence of photoreceptor outer-segments in the trabecular meshwork in a case of Schwartz-Matsuo syndrome. J Glaucoma. 2019;28:843–5.

    Article  PubMed  Google Scholar 

  80. Morgan WH, Yu DY. Surgical management of glaucoma: a review. Clin Exp Ophthalmol. 2012;40:388–99.

    Article  PubMed  Google Scholar 

  81. Conway RM, Chua WC, Qureshi C, Billson FA. Primary iris melanoma: diagnostic features and outcome of conservative surgical treatment. Br J Ophthalmol. 2001;85(7):848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wakae H, Higashide T, Tsuneyama K, Nakamura T, Takahashi K, Sugiyama K. Immunohistochemical characterization of the ectopic epithelium devoid of goblet cells from a posttraumatic iris cyst causing mucogenic glaucoma. J Glaucoma. 2016;25:e291–4.

    Article  PubMed  Google Scholar 

  83. Sehu KW, Lee WR, editors. Ophthalmic pathology: an illustrated guide for clinicians. Malden, MA: Blackwell Publishing Ltd; 2008. ISBN 9780727917799.

    Google Scholar 

  84. Kim M, Lee C, Payne R, Yue BY, Change JH, Ying H. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: a review. Surv Ophthalmol. 2015;60:524–35.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sun Y, Liang Y, Zhou P, Wu H, Hou X, Ren Z, et al. Anti-VEGF treatment is the key strategy for neovascular glaucoma management in the short term. BMC Ophthalmol. 2016;16:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tanaka S, Ideta H, Yonemoto J, Sasaki K, Hirose A, Oka C. Neovascularization of the iris in rhegmatogenous retina detachment. Am J Ophthalmol. 1991;112:632.

    Article  CAS  PubMed  Google Scholar 

  87. Luntz MH, Rosenblatt M. Malignant glaucoma. Surv Ophthalmol. 1987;32:73–93.

    Article  CAS  PubMed  Google Scholar 

  88. Foreman-Larkin J, Netland PA, Salim S. Clinical management of malignant glaucoma. J Ophthalmol. 2015;2015:283707. 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res. 2000;19:1–40.

    Article  CAS  PubMed  Google Scholar 

  90. Casson RJ, Chidlow G, Wood JPM, Crowston JG, Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol. 2012;40:341–9.

    Article  PubMed  Google Scholar 

  91. Montgomery D. Measurement of optic disc and neuroretinal rim areas in normal and glaucomatous eyes. Ophthalmology. 1991;98:50–9.

    Article  CAS  PubMed  Google Scholar 

  92. Malik R, Swanson WH, Garway-Heath DF. ‘Structure-function relationship’ in glaucoma: past thinking and current concepts. Clin Exp Ophthalmol. 2012;40:369–80.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52:S144–54.

    Article  PubMed  Google Scholar 

  94. Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol. 2016;27:94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43:337–41.

    Article  PubMed  Google Scholar 

  96. Radius RL. Anatomy of the optic nerve head and glaucomatous optic neuropathy. Surv Ophthalmol. 1987;32:35–44.

    Article  CAS  PubMed  Google Scholar 

  97. Quigley HA, Sanchez RM, Dunkelberger GR, L’Hernault NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibres. Invest Ophthalmol Vis Sci. 1987;28:913–20.

    CAS  PubMed  Google Scholar 

  98. Jonas JB, Muller Bergh JA, Schlotzer-Schrehardt UM, Naumann GOH. Histomorphometry of the human optic nerve. Invest Ophthalmol Vis Sci. 1990;31:736–44.

    CAS  PubMed  Google Scholar 

  99. Jonas JB, Fernandez MC, Naumann GOH. Correlation of the optic disc size to glaucoma susceptibility. Ophthalmology. 1991;98:675–80.

    Article  CAS  PubMed  Google Scholar 

  100. Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma. 2002;11:259–70.

    Article  PubMed  Google Scholar 

  101. Polak K, Luksch A, Berisha F, Fuchsjager-Mayrl G, Dallinger S, Schmetterer L. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol. 2007;125:494–8.

    Article  CAS  PubMed  Google Scholar 

  102. Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27:284–330.

    Article  CAS  PubMed  Google Scholar 

  103. Venkataraman ST, Flanagan JG, Hudson C. Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma – a review. Microcirculation. 2010;17:568–81.

    PubMed  Google Scholar 

  104. Miller KM, Quigley HA. The clinical appearance of the lamina cribrosa as a function of the extent of glaucomatous optic nerve damage. Ophthalmology. 1988;95:135–8.

    Article  CAS  PubMed  Google Scholar 

  105. Leung DY, Tham CC. Management of bleb complications after trabeculectomy. Semin Ophthalmol. 2013;28:144–56.

    Article  PubMed  Google Scholar 

  106. Lu LJ, Hall L, Liu J. Improving glaucoma surgical outcomes with adjunct tools. J Curr Glaucoma Pract. 2018;12:19–28.

    Article  Google Scholar 

  107. Mietz H, Arnold G, Kirchof B, Diestelhort M, Krieglstein GK. Histopathology of episcleral fibrosis after trabeculectomy with and without mitomycin C. Graefes. Arch Clin Exp Ophthalmol. 1996;234:364–8.

    Article  CAS  Google Scholar 

  108. Cillino S, Casuccio A, Di Pace F, Cagini C, Ferraro LL, Cillino G. Biodegradable collagen matrix implant versus mitomycin-C in trabeculectomy: five-year follow-up. BMC Ophthalmol. 2016;16:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sakarya Y, Sakarya R, Kara S, Soylu T. Fibrin glue coating of the surgical surfaces may facilitate formation of a successful bleb in trabeculectomy surgery. Med Hypotheses. 2011;77:263–5.

    Article  CAS  PubMed  Google Scholar 

  110. Sethi P, Patel RN, Goldhardt R, Ayyala RS. Conjunctival advancement with subconjunctival amniotic membrane draping technique for leaking cystic blebs. J Glaucoma. 2016;25:188–92.

    Article  PubMed  Google Scholar 

  111. Hampton C, Shields MB. Transscleral neodymium-YAG cyclophotocoagulation: a histologic study of human autopsy eyes. Arch Ophthalmol. 1988;106:1121–3.

    Article  CAS  PubMed  Google Scholar 

  112. Ndulue JK, Rahmatnejad K, Sanvicente C, Wizov SS, Moster MR. Evolution of cyclophotocoagulation. J Ophthalmic Vis Res. 2018;13:55–61.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Van Buskirk EM. Pathophysiology of laser trabeculoplasty. Surv Ophthalmol. 1989;33:264–72.

    Article  PubMed  Google Scholar 

  114. Garg A, Gazzard G. Selective laser trabeculoplasty: past, present, and future. Eye (Lond). 2018;32:863–76.

    Article  CAS  Google Scholar 

  115. Tsang S, Cheng J, Lee JWY. Developments in laser trabeculoplasty. Br J Ophthalmol. 2016;100:94–7.

    Article  PubMed  Google Scholar 

  116. Melamed S, Fiore PM. Molteno implant surgery in refractory glaucoma. Surv Ophthalmol. 1990;34:441–8.

    Article  CAS  PubMed  Google Scholar 

  117. Giovingo M. Complications of glaucoma drainage device surgery: a review. Semin Ophthalmol. 2014;29:397–402.

    Article  PubMed  Google Scholar 

  118. Aref AA, Gedde SJ, Budenz DL. Glaucoma drainage implant surgery. Dev Ophthalmol. 2017;59:43–52.

    Article  PubMed  Google Scholar 

  119. Loeffler KU, Jay JL. Tissue response to aqueous drainage in a functioning Molteno implant. Br J Ophthalmol. 1988;72:29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Classen L, Kivela T, Tarkkaanen A. Histopathologic and immunohistochemical analysis of the filtration bleb after unsuccessful glaucoma seton operation. Am J Ophthalmol. 1996;122:205–12.

    Article  CAS  PubMed  Google Scholar 

  121. Eftekhari K, Shindler KS, Lee V, Dine K, Eckstein LA, Reza VM. Histologic evidence of orbital inflammation from retrobulbar alcohol and chlorpromazine injection: a clinicopathologic study in human and rat orbits. Ophthal Plast Reconstr Surg. 2016;32:302–4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, F., Thum, C.K. (2021). Absolute Glaucoma. In: Lee's Ophthalmic Histopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-76525-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76525-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76524-8

  • Online ISBN: 978-3-030-76525-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics