Skip to main content

The Stiffness Model of the Compliant Positioning Mechanism with Watt’s Linkage

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 102))

Included in the following conference series:

  • 696 Accesses

Abstract

The conversion of the kinematic structures into micro-robotic devices enables to achieve devices with high performance in the small usually monolithic body. One example of a micro-robotic two degree of freedom positioning device that works on the principle of compact compliant mechanisms, and is inspired by Watt’s linkage is presented. However, such devices require a complex design process, where the stiffness model provides the necessary basic element in the evaluation/calculation of the compliant mechanism performance. The stiffness model of the proposed XY micro-positioning device is executed, where the conditions for dimensioning of the flexure hinges and actuators are formulated too. In the conclusion of the paper are compared results from described stiffness model with results from FEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, P., Zhou, Q., Shao, X.: Surrogate model-based engineering design and optimization. Springer Tracts in Mechanical Engineering (2020). https://doi.org/10.1007/978-981-15-0731-1

  2. VDI 2206: Design methodology for mechatronic systems. Entwurf, Beuth Verlag, Berlin (2004)

    Google Scholar 

  3. Machekposhti, D.F., Tolou, N., Herder, J.L.: A review on compliant joints and rigidbody constant velocity universal joints toward the design of compliant homokinetic couplings. J. Mech. Des. 137 (2015) https://doi.org/10.1115/1.4029318

  4. Beroz, J., Awtar, S., Bedewy, M., Sameh, T., Hart, A.J.: Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation. In: Proceedings of 26th American Society of Precision Engineering Annual Meeting, Denver, CO (2011)

    Google Scholar 

  5. Zhu, J., Hao, G.: Design and test of a compact compliant gripper using the Scott-Russell mechanism. Arch. Civ. Mech. Eng. 20, 81 (2020). https://doi.org/10.1007/s43452-020-00085-3

    Google Scholar 

  6. Wan, S., Xu, Q.: Design and analysis of a new compliant XY micropositioning stage based on Roberts mechanism. Mech. Mach. Theory 95, 125–139 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.09.003

    Google Scholar 

  7. Ishii, Y., Thümmel, T., Horie, M.: Dynamic characteristic of miniature molding pantograph mechanisms for surface mount systems. Microsyst. Technol. 11, 991–996 (2005). https://doi.org/10.1007/s00542-005-0525-5

    Google Scholar 

  8. Yong, Y.K., Lu, T.-F.: Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges. Mech. Mach. Theory 44(6), 1156–1175 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.09.005

    Google Scholar 

  9. Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton (2003) ISBN 0849313678

    Google Scholar 

  10. Wu, Y., Zhou, Z.: Design calculations for flexure hinges. Rev. Sci. Instrum. 73(8), 3101–3106 (2002)

    Google Scholar 

  11. Linß, S., Schorr, P., Zentner, L.: General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. Mech. Sci. 8, 29–49 (2017). https://doi.org/10.5194/ms-8-29-2017

    Google Scholar 

  12. Schotborgh, W.O., Kokkeler, F.G., Tragter, H., van Houten, F.J.: Dimensionless design graphs for flexure elements and a comparison between three flexure elements. Precision Eng. 29, 41–47 (2005)

    Google Scholar 

  13. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill International Editions, Electrical Engineering Series (1996) ISBN 0-07-114726-8

    Google Scholar 

  14. Ottaviano, E., Carbone, G., Ceccarelli, M.: Workspace analysis and performances of a binary actuated parallel manipulator with flexural joints. J. Mech. Eng. Sci. 217, 313–330 (2003)

    Google Scholar 

  15. Havlik, S.: Design of smart robotic mechanisms. In: 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD) (2014). https://doi.org/10.1109/raad.2014.7002270

  16. Howell, L.L., Magleby, S.P., Olsen, B.M.: Handbook of Compliant Mechanisms. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the national scientific grant agency VEGA under project No.: 2/0155/19 – “Processing sensory data via Artificial Intelligence methods” and by project APVV-14-0076 – “MEMS structures based on load cell”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hricko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hricko, J., Havlik, S. (2021). The Stiffness Model of the Compliant Positioning Mechanism with Watt’s Linkage. In: Zeghloul, S., Laribi, M.A., Sandoval, J. (eds) Advances in Service and Industrial Robotics. RAAD 2021. Mechanisms and Machine Science, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-75259-0_3

Download citation

Publish with us

Policies and ethics