Skip to main content

Water-Stable Metal-Organic Frameworks for Water Adsorption

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

In the past decade, tremendous efforts have concentrated on the synthesis of stable metal-organic frameworks to expand the inventory of their applications. While classic synthetic routes, such as isoreticular chemistry, have been employed to modify and enhance branch known structures of stable MOFs, new synthetic routes, such as preformed metal-containing clusters and use of modulators as competitive species during crystallization, have been discovered to enrich the landscape of stable MOFs. Since these later routes were reported during the past few years, explorations on these new stable MOFs are underestimated. In this chapter, we would give a brief introduction to highlight some prototypes of water-stable MOFs and their structural features and discuss the development of their uses in the water adsorption to practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng D, Chung W-C, Wei Z, Gu Z-Y, Jiang H-L, Chen Y-P et al (2013) Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J Am Chem Soc 135:17105–17110

    Article  Google Scholar 

  2. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C et al (2018) Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303

    Article  Google Scholar 

  3. Ding M, Cai X, Jiang H-L (2019) Improving MOF stability: approaches and applications. Chem Sci 10:10209–10230

    Article  Google Scholar 

  4. Kalaj M, Cohen SM (2020) Postsynthetic modification: an enabling technology for the advancement of metal-organic frameworks. ACS Cent Sci 6:1046–1057

    Article  Google Scholar 

  5. Lollar CT, Qin J-S, Pang J, Yuan S, Becker B, Zhou H-C (2018) Interior decoration of stable metal-organic frameworks. Langmuir 34:13795–13807

    Article  Google Scholar 

  6. Makal TA, Wang X, Zhou H-C (2013) Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups. Cryst Growth Des 13:4760–4768

    Article  Google Scholar 

  7. Yang C, Kaipa U, Mather QZ, Wang X, Nesterov V, Venero AF et al (2011) Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J Am Chem Soc 133:18094–18097

    Article  Google Scholar 

  8. Bigdeli F, Lollar CT, Morsali A, Zhou H-C (2020) Switching in metal-organic frameworks. Angew Chem Int Ed 59:4652–4669

    Article  Google Scholar 

  9. Burtch NC, Heinen J, Bennett TD, Dubbeldam D, Allendorf MD (2018) Mechanical properties in metal-organic frameworks: emerging opportunities and challenges for device functionality and technological applications. Adv Mater 30:1704124

    Article  Google Scholar 

  10. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43:5594–5617

    Article  Google Scholar 

  11. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA (2018) Metal-organic frameworks: defective metal-organic frameworks (Adv. Mater. 37/2018). Adv Mater 30:1870280

    Article  Google Scholar 

  12. Feng M, Zhang P, Zhou H-C, Sharma VK (2018) Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800

    Article  Google Scholar 

  13. Jiao L, Wang Y, Jiang H-L, Xu Q (2018) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663

    Article  Google Scholar 

  14. Kalmutzki MJ, Diercks CS, Yaghi OM (2018) Metal-organic frameworks for water harvesting from air. Adv Mater 30:1704304

    Article  Google Scholar 

  15. Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater 30:1707634

    Article  Google Scholar 

  16. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Drug delivery: nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine (Adv. Mater. 37/2018). Adv Mater 30:1870281

    Article  Google Scholar 

  17. Woellner M, Hausdorf S, Klein N, Mueller P, Smith MW, Kaskel S (2018) Adsorption and detection of hazardous trace gases by metal-organic frameworks. Adv Mater 30:1704679

    Article  Google Scholar 

  18. Zhao X, Wang Y, Li D-S, Bu X, Feng P (2018) Metal-organic frameworks for separation. Adv Mater 30:1705189

    Article  Google Scholar 

  19. Qin J-S, Yuan S, Lollar C, Pang J, Alsalme A, Zhou H-C (2018) Stable metal-organic frameworks as a host platform for catalysis and biomimetics. Chem Commun 54:4231–4249

    Article  Google Scholar 

  20. Wang C, Liu X, Keser Demir N, Chen JP, Li K (2016) Applications of water-stable metal-organic frameworks. Chem Soc Rev 45:5107–5134

    Article  Google Scholar 

  21. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382

    Article  Google Scholar 

  22. Millange F, Guillou N, Medina ME, Férey G, Carlin-Sinclair A, Golden KM et al (2010) Selective sorption of organic molecules by the flexible porous hybrid metal−organic framework MIL-53(Fe) controlled by various host−guest interactions. Chem Mater 22:4237–4245

    Article  Google Scholar 

  23. Horcajada P, Surblé S, Serre C, Hong D-Y, Seo Y-K, Chang J-S et al (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem Commun 27:2820–2822

    Article  Google Scholar 

  24. Wang D, Wang M, Li Z (2015) Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol. ACS Catal 5:6852–6857

    Article  Google Scholar 

  25. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186

    Article  Google Scholar 

  26. Gallaba DH, Albesa AG, Migone AD (2016) Evidence of gate-opening on xenon adsorption on ZIF-8: an adsorption and computer simulation study. J Phys Chem C 120:16649–16657

    Article  Google Scholar 

  27. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, Keeffe M et al (2008) High-throughput synthesis of Zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939

    Article  Google Scholar 

  28. Van der Perre S, Bozbiyik B, Lannoeye J, De Vos DE, Baron GV, Denayer JFM (2015) Experimental study of adsorptive interactions of polar and nonpolar adsorbates in the zeolitic imidazolate framework ZIF-68 via pulse gas chromatography. J Phys Chem C 119:1832–1839

    Article  Google Scholar 

  29. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S et al (2008) A new zirconium inorganic building brick forming metal-organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  30. Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Férey G et al (2009) [Al4(OH)2(OCH3)4(H2N-BDC)3]·x H2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed 48:5163–5166

    Article  Google Scholar 

  31. Reinsch H, Feyand M, Ahnfeldt T, Stock N (2012) CAU-3: a new family of porous MOFs with a novel Al-based brick: [Al2(OCH3)4(O2C-X-CO2)] (X = aryl). Dalton Trans 41:4164–4171

    Article  Google Scholar 

  32. Reinsch H, van der Veen MA, Gil B, Marszalek B, Verbiest T, de Vos D et al (2013) Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem Mater 25:17–26

    Article  Google Scholar 

  33. Feng D, Gu Z-Y, Li J-R, Jiang H-L, Wei Z, Zhou H-C (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed 51:10307–10310

    Article  Google Scholar 

  34. Morris W, Volosskiy B, Demir S, Gándara F, McGrier PL, Furukawa H et al (2012) Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem 51:6443–6445

    Article  Google Scholar 

  35. Zhang G-Y, Zhuang Y-H, Shan D, Su G-F, Cosnier S, Zhang X-J (2016) Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal Chem 88:11207–11212

    Article  Google Scholar 

  36. Liu T-F, Feng D, Chen Y-P, Zou L, Bosch M, Yuan S et al (2015) Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J Am Chem Soc 137:413–419

    Article  Google Scholar 

  37. Feng D, Wang K, Wei Z, Chen Y-P, Simon CM, Arvapally RK et al (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat Commun 5:5723

    Article  Google Scholar 

  38. Yuan S, Sun X, Pang J, Lollar C, Qin J-S, Perry Z et al (2017) PCN-250 under pressure: sequential phase transformation and the implications for MOF densification. Joule 1:806–815

    Article  Google Scholar 

  39. Feng D, Liu T-F, Su J, Bosch M, Wei Z, Wan W et al (2015) Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979

    Article  Google Scholar 

  40. Wang K, Lv X-L, Feng D, Li J, Chen S, Sun J et al (2016) Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. J Am Chem Soc 138:914–919

    Article  Google Scholar 

  41. Feng D, Wang K, Su J, Liu T-F, Park J, Wei Z et al (2015) A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores. Angew Chem Int Ed 54:149–154

    Article  Google Scholar 

  42. Balestri D, Roux Y, Mattarozzi M, Mucchino C, Heux L, Brazzolotto D et al (2017) Heterogenization of a [NiFe] hydrogenase mimic through simple and efficient encapsulation into a mesoporous MOF. Inorg Chem 56:14801–14808

    Article  Google Scholar 

  43. Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    Article  Google Scholar 

  44. Doonan CJ, Morris W, Furukawa H, Yaghi OM (2009) Isoreticular metalation of metal−organic frameworks. J Am Chem Soc 131:9492–9493

    Article  Google Scholar 

  45. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, Keeffe M et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469

    Article  Google Scholar 

  46. Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J et al (2011) Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 50:9147–9152

    Article  Google Scholar 

  47. Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen WL, Hudson MR et al (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–4381

    Article  Google Scholar 

  48. Xue M, Zhu G, Li Y, Zhao X, Jin Z, Kang E et al (2008) Structure, hydrogen storage, and luminescence properties of three 3D metal−organic frameworks with NbO and PtS topologies. Cryst Growth Des 8:2478–2483

    Article  Google Scholar 

  49. Mon M, Lloret F, Ferrando-Soria J, Martí-Gastaldo C, Armentano D, Pardo E (2016) Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angew Chem Int Ed 55:11167–11172

    Article  Google Scholar 

  50. Zhang Q, Yu J, Cai J, Zhang L, Cui Y, Yang Y et al (2015) A porous Zr-cluster-based cationic metal-organic framework for highly efficient Cr2O72− removal from water. Chem Commun 51:14732–14734

    Article  Google Scholar 

  51. Fei H, Paw UL, Rogow DL, Bresler MR, Abdollahian YA, Oliver SRJ (2010) Synthesis, characterization, and catalytic application of a cationic metal−organic framework: Ag2(4,4′-bipy)2(O3SCH2CH2SO3). Chem Mater 22:2027–2032

    Article  Google Scholar 

  52. Fei H, Han CS, Robins JC, Oliver SRJ (2013) A cationic metal-organic solid solution based on Co(II) and Zn(II) for chromate trapping. Chem Mater 25:647–652

    Article  Google Scholar 

  53. Fu H-R, Xu Z-X, Zhang J (2015) Water-stable metal-organic frameworks for fast and high dichromate trapping via single-crystal-to-single-crystal ion exchange. Chem Mater 27:205–210

    Article  Google Scholar 

  54. Ahn S, Thornburg NE, Li Z, Wang TC, Gallington LC, Chapman KW et al (2016) Stable metal-organic framework-supported niobium catalysts. Inorg Chem 55:11954–11961

    Article  Google Scholar 

  55. Choi I-H, Yoon SB, Jang S-Y, Huh S, Kim S-J, Kim Y (2019) Gas sorption properties of a new three-dimensional in-ABDC MOF with a diamond net. Front Mater 6. https://doi.org/10.3389/fmats.2019.00218

  56. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018) Recent advances in gas storage and separation using metal-organic frameworks. Mater Today 21:108–121

    Article  Google Scholar 

  57. Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5:32–51

    Article  Google Scholar 

  58. Hu Z, Wang Y, Shah BB, Zhao D (2019) CO2 capture in metal-organic framework adsorbents: an engineering perspective. Adv Sustain Syst 3:1800080

    Article  Google Scholar 

  59. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J et al (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    Article  Google Scholar 

  60. Li J, Wang H, Yuan X, Zhang J, Chew JW (2020) Metal-organic framework membranes for wastewater treatment and water regeneration. Coord Chem Rev 404:213116

    Article  Google Scholar 

  61. Wang C, Kim J, Malgras V, Na J, Lin J, You J et al (2019) Water purification: metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification (small 16/2019). Small 15:1970085

    Article  Google Scholar 

  62. Wang H, Zhao S, Liu Y, Yao R, Wang X, Cao Y et al (2019) Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat Commun 10:4204

    Article  Google Scholar 

  63. Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D et al (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. J Am Chem Soc 124:13519–13526

    Article  Google Scholar 

  64. Millange F, Guillou N, Walton RI, Grenèche J-M, Margiolaki I, Férey G (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Commun 130(39):4732–4734

    Article  Google Scholar 

  65. Devautour-Vinot S, Maurin G, Henn F, Serre C, Devic T, Férey G (2009) Estimation of the breathing energy of flexible MOFs by combining TGA and DSC techniques. Chem Commun 21:2733–2735

    Article  Google Scholar 

  66. Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S et al (2009) Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater 120:325–330

    Article  Google Scholar 

  67. Henninger SK, Habib HA, Janiak C (2009) MOFs as adsorbents for low-temperature heating and cooling applications. J Am Chem Soc 131:2776–2777

    Article  Google Scholar 

  68. Scherb C, Koehn R, Bein T (2010) Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction. J Mater Chem 20:3046–3051

    Article  Google Scholar 

  69. Biswas S, Ahnfeldt T, Stock N (2011) New functionalized flexible Al-MIL-53-X (X = –Cl, –Br, –CH3, –NO2, –(OH)2) solids: syntheses, characterization, sorption, and breathing behavior. Inorg Chem 50:9518–9526

    Article  Google Scholar 

  70. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S (2012) Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater 157:89–93

    Article  Google Scholar 

  71. Cmarik GE, Kim M, Cohen SM, Walton KS (2012) Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28:15606–15613

    Article  Google Scholar 

  72. Schoenecker PM, Carson CG, Jasuja H, Flemming CJJ, Walton KS (2012) Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind Eng Chem Res 51:6513–6519

    Article  Google Scholar 

  73. Seo Y-K, Yoon JW, Lee JS, Hwang YK, Jun C-H, Chang J-S et al (2012) Energy-efficient dehumidification over hierarchically porous metal-organic frameworks as advanced water adsorbents. Adv Mater 24:806–810

    Article  Google Scholar 

  74. Wade CR, Corrales-Sanchez T, Narayan TC, Dincă M (2013) Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ Sci 6:2172–2177

    Article  Google Scholar 

  75. Fröhlich D, Henninger SK, Janiak C (2014) Multicycle water vapor stability of microporous breathing MOF aluminum isophthalate CAU-10-H. Dalton Trans 43:15300–15304

    Article  Google Scholar 

  76. Jeremias F, Fröhlich D, Janiak C, Henninger SK (2014) Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminum fumarate MOF. RSC Adv 4:24073–24082

    Article  Google Scholar 

  77. Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B, Farrusseng D (2014) Structure-property relationships of water adsorption in metal-organic frameworks. New J Chem 38:3102–3111

    Article  Google Scholar 

  78. Cadiau A, Lee JS, Damasceno Borges D, Fabry P, Devic T, Wharmby MT et al (2015) Design of hydrophilic metal-organic framework water adsorbents for heat reallocation. Adv Mater 27:4775–4780

    Article  Google Scholar 

  79. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H et al (2017) Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356:430

    Article  Google Scholar 

  80. Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM (2018) Practical water production from desert air. Sci Adv 4:eaat3198

    Article  Google Scholar 

  81. Kim H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM et al (2018) Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun 9:1191

    Article  Google Scholar 

  82. Hanikel N, Prévot MS, Fathieh F, Kapustin EA, Lyu H, Wang H et al (2019) Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent Sci 5:1699–1706

    Article  Google Scholar 

  83. Rieth AJ, Yang S, Wang EN, Dincă M (2017) Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent Sci 3:668–672

    Article  Google Scholar 

  84. Wang S, Lee JS, Wahiduzzaman M, Park J, Muschi M, Martineau-Corcos C et al (2018) A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration. Nat Energy 3:985–993

    Article  Google Scholar 

  85. Lenzen D, Zhao J, Ernst S-J, Wahiduzzaman M, Ken Inge A, Fröhlich D et al (2019) A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling. Nat Commun 10:3025

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Texas A&M Higher Education Center and College of Science of Texas A&M University for their additional support.

Author contributions

X. W. planned and prepared the manuscript and C. L. assisted in writing part of section 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Lee, C. (2021). Water-Stable Metal-Organic Frameworks for Water Adsorption. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_14

Download citation

Publish with us

Policies and ethics