Skip to main content

Biomechanics of the Spine

  • Chapter
  • First Online:
MRI of Degenerative Disease of the Spine

Abstract

The spine is a multiarticular structure composed of motion segments whose correct function has stability as prerequisite.

Spinal stability is a fundamental property for the protection of nervous elements, the active generation of forces in the body trunk and the transfer of them between the upper and lower limbs, the prevention of the early biomechanical deterioration of its own components and the reduction of energy expenditure during muscle action.

The stabilization of the spine is guaranteed by a stabilization system consisting of three closely related subsystems: (1) the spinal bones and joints or passive subsystem; (2) the muscles forming the active subsystem; (3) a central control unit, the CNS.

Spine instability is a frequent and often misdiagnosed cause of neck and back pain and disability. In particular degenerative instability is considered a common cause of acute and chronic spinal pain and disability as well as a frequent indication for surgery.

During the instability phase, several MR signs can be found including endplate oedema, peduncle and isthmus oedema, traction spurs, discal vacuum associated with disc space narrowing, joint effusion, synovial cysts, anterolisthesis and retrolisthesis.

Open MR systems allow positional-dynamic studies in either standing or seated positions to detect increased and abnormal intersegmental movements which can worsen or uncover a central canal, lateral recesses and/or foraminal stenosis, disc protrusion or disc extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirkaldy-Willis WH (1985) Presidential symposium on instability of the lumbar spine. Introduction. Spine 10:254

    Article  Google Scholar 

  2. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. JB Lippincott, Philadelphia, PA

    Google Scholar 

  3. Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5:390–397

    Article  CAS  PubMed  Google Scholar 

  4. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation and enhancement. J Spinal Disord 5:383–389

    Article  CAS  PubMed  Google Scholar 

  5. Bogduk N (2012) Basic biomechanics. In: Bogduk N (ed) Clinical and radiological anatomy of the lumbar spine. Churchill-Livingstone Elsevier, Edinburgh, pp 61–72

    Google Scholar 

  6. Hansson TH, Kelelr TS, Spengler DM (1987) Mechanical behaviour of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5:479–487

    Article  CAS  PubMed  Google Scholar 

  7. Bogduk N (1992) Sources of low back pain. In: Jayson MIV (ed) The lumbar spine and back pain. Churchill-Livingstone, Edinburgh, pp 61–68

    Google Scholar 

  8. Bogduk N (2012) The interbody joint and the intervertebral discs. In: Bogduk N (ed) Clinical and radiological anatomy of the lumbar spine. Churchill Livingstone Elsevier, Edinburgh, pp 11–27

    Google Scholar 

  9. Louis R (1989) Chirurgia del rachide. Piccin ed, Padova, pp 67–69

    Google Scholar 

  10. Wilke HJ, Wolf S, Claes L et al (1995) Stability increase of the lumbar spine with different muscle groups: a biomechanical in vitro study. Spine 20:192–198

    Article  CAS  PubMed  Google Scholar 

  11. Panjabi MMA (2006) Hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 15:668–676

    Article  PubMed  Google Scholar 

  12. Luoto S, Hurri H, Alaranta H (1995) Reaction times in patients chronic low-back pain. Eur J Phys Med Rehabil 5:47–50

    Google Scholar 

  13. White AA III, Panjabi MM (1978) The basic kinematics of the human spine. Spine 3(1):12–20

    Article  PubMed  Google Scholar 

  14. Pope MH, Panjabi M (1985) Biomechanical definitions of spinal instability. Spine 10:255–256

    Article  CAS  PubMed  Google Scholar 

  15. Bogduk N (2012) Instability. In: Bogduk N (ed) Clinical and radio-logical anatomy of the lumbar spine. Churchill Livingstone Elsevier, Edinburgh, pp 207–216

    Google Scholar 

  16. Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123

    Google Scholar 

  17. Macnab I (1971) The traction spur: an indicator of segmental instability. J Bone Joint Surg Am 53:663–670

    Article  CAS  PubMed  Google Scholar 

  18. Chaput C, Padon D, Rush J et al (2007) The significance of increased fluid signal on magnetic resonance imaging in lumbar facets in relationship to degenerative spondylolisthesis. Spine 32(17):1883–1887

    Article  PubMed  Google Scholar 

  19. Alyas F, Connell D, Saifuddin A (2008) Upright positional MRI of the lumbar spine. Clin Radiol 63:1035–1048

    Article  CAS  PubMed  Google Scholar 

  20. Smith FW (2005) Positional upright imaging of the lumbar spine modifies the management of low back pain and sciatica. European Society of Skeletal Radiology, Oxford, p 2005

    Google Scholar 

  21. Cartolari R (1997) Functional evaluation of the lumbar spine with axial-loaded computer tomography and cine ALCT. Riv Neuroradiol 10:569–584

    Article  Google Scholar 

  22. Fujiwara A, Lim TH, An HS et al (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25(23):3036–3044

    Article  CAS  PubMed  Google Scholar 

  23. Matsunaga S, Ijiri K, Hayashi K (2000) Nonsurgically managed patients with degenerative spondylolisthesis: a 10- to 18-year follow-up study. J Neurosurg 93:194–198

    Article  CAS  PubMed  Google Scholar 

  24. Mulholland RC (2008) The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain. Eur Spine J 17:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Suggested Readings

  • Hansen BB, Nordberg CL, Hansen P et al (2019) Weight-bearing MRI of the Lumbar Spine. Spinal Stenosis and Spondylolisthesis. Semin Musculoskelet Radiol 23(6):621–633

    Article  PubMed  Google Scholar 

  • Harvey S, Hukins D, Smith F et al (2016) Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy. J Back Musculoskelet Rehabil 29(3):445–457

    Article  PubMed  Google Scholar 

  • Lao LF, Zhong GB, Li QY et al (2014) Kinetic magnetic resonance imaging analysis of spinal degeneration: a systematic review. Orthop Surg 6(4):294–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelini G, Corridore A, Torlone S et al (2018) Dynamic MRI in the evaluation of the spine: state of the art. Acta Biomed 89(1-S):89–101

    PubMed  PubMed Central  Google Scholar 

  • Muto M, Giurazza F, Guarnieri G et al (2016) Neuroimaging of spinal instability. Magn Reson Imaging Clin N Am 24(3):485–494

    Article  PubMed  Google Scholar 

  • Oichi T, Taniguchi Y, Oshima Y et al (2020) Pathomechanism of intervertebral disc degeneration. JOR Spine 3(1):e1076

    Article  PubMed  PubMed Central  Google Scholar 

  • Segebarth B, Kurd MF, Haug PH et al (2015) Routine upright imaging for evaluating degenerative lumbar stenosis: incidence of degenerative spondylolisthesis missed on supine MRI. J Spinal Disord Tech 28(10):394–397

    Article  PubMed  Google Scholar 

  • Splendiani A, Perri M, Grattacaso G et al (2016) Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med 121:38–44

    Article  PubMed  Google Scholar 

  • Vincent SA, Anderson PA (2018) The unstable spine: a surgeon’s perspective. Semin Ultrasound CT MR 39(6):618–629

    Article  PubMed  Google Scholar 

  • Wang XD, Feng MS, Hu YC (2019) Establishment and finite element analysis of a three-dimensional dynamic model of upper cervical spine instability. Orthop Surg 11(3):500–509

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Roberto Izzo for his contribution in writing this chapter.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Aprile, P., Tarantino, A. (2021). Biomechanics of the Spine. In: MRI of Degenerative Disease of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-73707-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73707-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73706-1

  • Online ISBN: 978-3-030-73707-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics