Skip to main content

Beyond LP and MILP Problems ⊖

  • Chapter
  • First Online:
Business Optimization Using Mathematical Programming

Abstract

This chapter mentions several optimization problems which go beyond linear and mixed integer linear optimization. The focus is rather on motivation. Therefore, it is not intended to cover these topics in complete depth, but the reader should at least be aware that modeling real-world problems is not restricted to linear models. In fractional programming we show how to transform the problem to linear programming, and successive linear programming as a special solution technique of nonlinear optimization. Next, we briefly discuss stochastic optimization. For quadratic programming, which is again a special case of nonlinear optimization, we provide an equivalent formulation based on special ordered sets. Nonlinear optimization is covered in more detail in the next chapter followed by separate chapters on deterministic global optimization in practice and polylithic modeling and solution approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, they are not really coefficients but rather functions multiplied onto the variable.

  2. 2.

    A solution is called a local optimum if there exists no better feasible solution in its “vicinity.”

  3. 3.

    A solution is a global optimum if there exists no better feasible solution.

  4. 4.

    In refinery industry the expression quality or quality constraints is commonly used. The quality itself can be measured in dimensionless quantities such as concentration (tons/ton) or in appropriate physical units (take viscosity as an example).

  5. 5.

    In principle the methods work with an arbitrary number of variables — but if problems get larger, convergence problems and the significance of good initial guesses increase.

  6. 6.

    Historically, the term quadratic programming (QP) refers to a quadratic objective function and linear constraints. Nowadays, sometimes, the more general problem with a quadratic objective function and quadratic constraints is also referred to as quadratic programming. Sometimes it is named QPQC. If the QP or QPQC involves integer variables, one also sees the naming MIQCQP. Thus, the advice is: Always check carefully for the definition when authors refer to quadratic programming.

References

  1. Andrade, R., Lisser, A., Maculan, N., Plateau, G.: BB strategies for stochastic integer programming. In: Spielberg, K., Guignard, M. (eds.) Special Volume of Annals of OR: State-of-the-Art IP and MIP (Algorithms, Heuristics and Applications). Kluwer Academic Publishers, Dordrecht (2005)

    Google Scholar 

  2. Arellano-Garcia, H., Martini, W., Wendt, M., Li, P., Wozny, G.: Chance-constrained batch distillation process optimization under uncertainty. In: Grossmann, I.E., McDonald, C.M. (eds.) Proceedings of the 4th International Conference on Foundations of Computer-Aided Process Operations (FOCAPO), pp. 609–612. OMNI Press, Wisconsin (2003)

    Google Scholar 

  3. Arellano-Garcia, H., Martini, W., Wendt, M., Wozny, G.: Robust optimization process design optimization under uncertainty. In: Floudas, C.A., Agrawal, R. (eds.) Proceedings of the 6th International of Conference on Foundations of Computer-Aided Process Design (FOCAPD), pp. 505–508. CACHE Corp., Austin, TX (2004)

    Google Scholar 

  4. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manage. Sci. 50, 761–776 (2004)

    Article  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)

    Article  Google Scholar 

  6. Benson, H.: Global optimization of nonlinear sums of ratios. J. Math. Anal. Appl. 263, 301–315 (2001)

    Article  Google Scholar 

  7. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. Ser. B 98, 49–71 (2003)

    Article  Google Scholar 

  8. Beyer, H.G., Sendhoff, B.: Robust optimization - a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33), 3190 – 3218 (2007)

    Article  Google Scholar 

  9. Birge, J.R.: Stochastic programming computation and applications. INFORMS J. Comput. 9, 111–133 (1997)

    Article  Google Scholar 

  10. Carœ, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1999)

    Article  Google Scholar 

  11. Castillo, P., Castro, P., Mahalec, V.: Global optimization of nonlinear Blend-scheduling problems. Engineering 3, 188–201 (2017)

    Article  Google Scholar 

  12. Chakraborty, A., Malcom, A., Colberg, R.D., Linninger, A.A.: Optimal waste reduction and investment planning under uncertainty. Comput. Chem. Eng. 28, 1145–1156 (2004)

    Article  Google Scholar 

  13. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 5, 73–79 (1959)

    Article  Google Scholar 

  14. Cheng, L., Subrahmanian, E., Westerberg, A.W.: Design and planning under uncertainty: issues on problem formulation and solution. Comput. Chem. Eng. 27, 781–801 (2003)

    Article  Google Scholar 

  15. Choi, T.M. (ed.): Handbook of Newsvendor Problems: Models, Extensions and Applications. International Series in Operations Research & Management Science, vol. 176. Springer, New York (2012)

    Google Scholar 

  16. Dantzig, C.B.: Linear programming under uncertainty. Manage. Sci. 1, 197–206 (1955)

    Article  Google Scholar 

  17. Dantzig, G.B., Dempster, M.A.H., Kallio, M.J. (eds.): Large-scale Linear Programming. IIASA Collaborative Proceedings Series, vol. CP-81-51. International Institute for Applied System Analysis, Laxenburg (1981)

    Google Scholar 

  18. Di Domenica, N., Lucas, C., Mitra, G., Valente, P.: Scenario generation for stochastic programming and simulation: a modelling perspective. IMA J. Manage. Math. 20(1), 1–38 (2007)

    Article  Google Scholar 

  19. Escudero, L., Garín, A., Merino, M., Pérez, G.: The value of the stochastic solution in multistage problems. TOP: An Off. J. Span. Soc. Stat. Oper. Res. 15(1), 48–64 (2007)

    Article  Google Scholar 

  20. Fieldhouse, M.: The pooling problem. In: Ciriani, T., Leachman, R.C. (eds.) Optimization in Industry: Mathematical Programming and Modeling Techniques in Practice, pp. 223–230. Wiley, Chichester (1993)

    Google Scholar 

  21. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N.V., Vigerske, S., Wiegele, A.: QPLIB: a library of quadratic programming instances. Math. Program. Comput. 11(2), 237–265 (2019)

    Article  Google Scholar 

  22. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    Google Scholar 

  23. Goel, V., Grossmann, I.E.: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comput. Chem. Eng. 28(8), 1409–1429 (2004)

    Article  Google Scholar 

  24. Gregory, C., Darby-Dowman, K., Mitra, G.: Robust optimization and portfolio selection: the cost of robustness. Eur. J. Oper. Res. 212(2), 417–428 (2011)

    Article  Google Scholar 

  25. Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27, 1219–1227 (2003)

    Article  Google Scholar 

  26. Gupta, A., Maranas, C.D., McDonald, C.M.: Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Comput. Chem. Eng. 24(12), 2613–2621 (2000)

    Article  Google Scholar 

  27. Henrion, R., Küchler, C., Römisch, W.: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. J. Ind. Manage. Optim. 4, 363–384 (2008)

    Article  Google Scholar 

  28. Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comput. Optim. Appl. 43, 67–93 (2009)

    Article  Google Scholar 

  29. Janak, S.L., Lin, X., Floudas, C.A.: A new robust optimization approach for scheduling under uncertainty - II. Uncertainty with known probability distribution. Comput. Chem. Eng. 31, 171–195 (2007)

    Google Scholar 

  30. Jia, Z., Ierapetritou, M.: Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind. Eng. Chem. Res. 42, 825–835 (2003)

    Article  Google Scholar 

  31. Kall, P.: Stochastic Linear Programming. Springer, Berlin (1976)

    Book  Google Scholar 

  32. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)

    Google Scholar 

  33. Kallrath, J.: Combined strategic and operational planning - an MILP success story in chemical industry. OR Spectrum 24(3), 315–341 (2002)

    Article  Google Scholar 

  34. Kallrath, J.: Pricing problems in the chemical process industry. Comput. Manage. Sci. 5, 403–405 (2008)

    Article  Google Scholar 

  35. Klein-Haneveld, W.K., van der Vlerk, M.H.: Stochastic integer programming: general models and algorithms. Ann. Oper. Res. 85, 39–57 (1999)

    Article  Google Scholar 

  36. Lin, X., Janak, S.L., Floudas, C.A.: A new robust optimization approach for scheduling under uncertainty - I. bounded uncertainty. Comput. Chem. Eng. 28, 1069–1085 (2004)

    Google Scholar 

  37. Main, R.A.: Large recursion models: practical aspects of recursion techniques. In: Ciriani, T., Leachman, R.C. (eds.) Optimization in Industry: Mathematical Modeling Techniques in Practice, pp. 241–249. Wiley, Chichester (1993)

    Google Scholar 

  38. Meyn, S.P.: Stability, performance evaluation, and optimization. In: Handbook of Markov Decision Processes. International Series in Operations Research & Management Science, vol. 40, pp. 305–346. Kluwer Academic Publishers, Boston, MA (2002)

    Google Scholar 

  39. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies survey. Appl. Computat. Math. 8, 3–22 (2009)

    Google Scholar 

  40. Mitra, G., Poojari, C., Sen, S.: Strategic and tactical planning models for supply chain: an application of stochastic mixed integer programming. In: Aardal, I., Nemhauser, G.L., Weismantel, R. (eds.) Handbook of Discrete Optimization. Elsevier, North-Holland (2004)

    Google Scholar 

  41. Mutapcic, A., Boyd, S.: Cutting-set methods for robust optimization with pessimizing oracles. Optim. Methods Softw. 24, 381–406 (2009)

    Article  Google Scholar 

  42. Orçun, S., Altinel, I.K., Hortaçsu, O.: Scheduling of batch processes with operational uncertainties. Comput. Chem. Eng. 20, S1215–S1220 (1996)

    Article  Google Scholar 

  43. Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  44. Rahimian, H., Mehrotra, S.: Distributionally robust optimization: a review (2019). arXiv:1908.05659 [math.OC]

    Google Scholar 

  45. Rommelfanger, H.: Fuzzy Decision Support-Systeme - Entscheiden bei Unschärfe, 2nd edn. Springer, Heidelberg (1993)

    Google Scholar 

  46. Ruszczyński, A., Shapiro, A.: Stochastic programming. In: Handbooks in Operations Research and Management Science, vol. 10. Elsevier, North-Holland (2003)

    Google Scholar 

  47. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)

    Article  Google Scholar 

  48. Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Math. Program. 70, 73–89 (1995)

    Article  Google Scholar 

  49. Schultz, R.: Stochastic programming with integer variables. Math. Program. Ser. B 97, 285–309 (2003)

    Article  Google Scholar 

  50. Sen, S.: Algorithms for stochastic mixed-integer programming models. In: Aardal, I., Nemhauser, G.L., Weismantel, R. (eds.) Handbook of Discrete Optimization. Elsevier, North-Holland (2004)

    Google Scholar 

  51. Sen, S., Higle, J.L.: An introductory tutorial on stochastic linear programming models. Interfaces 29(2), 33–61 (1999)

    Article  Google Scholar 

  52. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on stochastic programming: Modeling and theory. MPS-SIAM Series on Optimization, vol. 9. Society for Industrial and Applied Mathematics, Philadelphia, PA (2009)

    Google Scholar 

  53. Tawarmalani, M., Sahinidis, N.V.: The pooling problem. In: Sahinidis, N.V., Tawarmalani, M. (eds.) Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and Its Applications, vol. 65, pp. 253–283. Springer, Boston, MA (2002)

    Google Scholar 

  54. Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling languages for stochastic programming. INFORMS J. Comput. 21(1), 107–122 (2009)

    Article  Google Scholar 

  55. Wallace, S.W.: Decision making under uncertainty: is sensitivity analysis of any use? Oper. Res. 48, 20–25 (2000)

    Article  Google Scholar 

  56. Xiao, X., Floudas, C.: Integrated gasoline blending and order delivery operations: part I. Short-term scheduling and global optimization for single and multi-period operations. AIChE J. 62(6), 2043–2070 (2016)

    Google Scholar 

  57. Zhang, J., Kim, N., Lasdon, L.: An improved successive linear programming algorithm. Manage. Sci. 31, 1312–1331 (1985)

    Article  Google Scholar 

  58. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 2nd edn. Kluwer Academic Publishers, Boston, MA (1987)

    Google Scholar 

  59. Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Academic Publishers, Boston, MA (1987)

    Book  Google Scholar 

  60. Zimmermann, H.J.: An application-oriented view of modeling uncertainty. Eur. J. Oper. Res. 122, 190–198 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

11.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kallrath, J. (2021). Beyond LP and MILP Problems ⊖. In: Business Optimization Using Mathematical Programming. International Series in Operations Research & Management Science, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-030-73237-0_11

Download citation

Publish with us

Policies and ethics