Skip to main content

How Optimization Is Used in Practice: Case Studies in Integer Programming

  • Chapter
  • First Online:
Business Optimization Using Mathematical Programming

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 307))

  • 1148 Accesses

Abstract

This chapter contains several case studies with an industrial background which involve mixed integer programming techniques. We discuss real-world problems of increasing size and complexity. The first group of case studies considers a contract allocation problem, metal ingot production, and a project planning problem. This follows a more extensive scheduling problem in the carton industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sect. 10.4.5 we present a reformulated version of the model which is capable of handling an arbitrary number of modes and changes between them.

  2. 2.

    Here we used the special case information that M i = N P.

  3. 3.

    See also Patterson et al. (1989,[438]) for a general discussion of such problems.

  4. 4.

    The term client is used to refer to one who asks for support from a mathematical consultant. The term customer is used to denote one who purchases goods from the client.

  5. 5.

    The values for N P ≤ 4 have been computed by Colombani & Heipcke (1997,[127]) in less than 2 min using the constraint programming software package SchedEns.

  6. 6.

    Take the following example: The inequality 3.2α 1 + 3.9α 2 ≤ 8 with integer variables α 1 and α 2 has the valid inequality 4α 1 + 4α 2 ≤ 8 which is equivalent to α 1 + α 2 ≤ 2. If we draw the feasible regions associated with the original constraint and α 1 + α 2 ≤ 2 we see that the latter gives a smaller feasible region and thus is the tighter constraint.

  7. 7.

    ModelCuts are problem-specific cuts, i.e., valid inequalities that will cut-off unwanted fractional values of binary or integer variables and that are otherwise redundant constraints. They are added directly to the model formulation. In contrast, in B&C cuts are added dynamically in the tree to cut-off unwanted fractional variables.

References

  1. Ashford, R.W., Daniel, R.C.: Practical aspects of mathematical programming. In: Munford, A.G., Bailey, T.C. (eds.) Operational Research Tutorial Papers, pp. 105–122. Operational Research Society, Birmingham (1991)

    Google Scholar 

  2. Ashford, R.W., Daniel, R.C.: Some lessons in solving practical integer programming problems. J. Oper. Res. Soc. 43, 425–433 (1992)

    Google Scholar 

  3. Bartusch, M., Möhring, R.H., Radermacher, F.J.: Scheduling project networks with resource constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

    Article  Google Scholar 

  4. Blackburn, R., Kallrath, J., Klosterhalfen, S.T.: Operations research in BASF’s supply chain operations. Int. Trans. Oper. Res. 22(3), 385–405 (2014)

    Google Scholar 

  5. Brockmüller, B., Günlük, O., Wolsey, L.A.: Designing private line networks - polyhedral analysis and computation. Trans. Oper. Res. 16, 7–24 (1997)

    Google Scholar 

  6. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29, 262–273 (1987)

    Article  Google Scholar 

  7. Colombani, Y., Heipcke, S.: The Constraint Solver SchedEns. Tutorial and Documentation. Technical report, LIM Laboratoire d’Informatique Marseille, Marseille (1997)

    Google Scholar 

  8. Flin, H., Liebling, T.M., Prodon, A.: Optimal subtrees and extensions. Ann. Discr. Math. 16, 121–127 (1982)

    Google Scholar 

  9. Heipcke, S.: Resource Constrained Job-Shop-Scheduling with Constraint Nets. Diplomarbeit, Katholische Universität Eichstätt, Mathem.-Geographische Fakultät, Universität Eichstätt, Eichstätt (1995)

    Google Scholar 

  10. Janak, S.L., Floudas, C.A., Kallrath, J., Vormbrock, N.: Production scheduling of a large-scale industrial batch plant: I. Short-term and medium-term scheduling. Ind. Eng. Chem. Res. 45, 8234–8252 (2006a)

    Google Scholar 

  11. Kallrath, J.: Diskrete Optimierung in der chemischen Industrie. In: Bachem, A., Jünger, M., Schrader, R. (eds.) Mathematik in der Praxis - Fallstudien aus Industrie, Wirtschaft, Naturwissenschaften und Medizin, pp. 173–195. Springer, Berlin (1995)

    Google Scholar 

  12. Karmarkar, U.S., Schrage, L.: The deterministic dynamic product cycling problem. Oper. Res. 33, 326–345 (1985)

    Article  Google Scholar 

  13. Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J.: An algorithm for a general class of precedence and resource constrained scheduling problems. In: Slowinski, R., Weglarz, J. (eds.) Advances in Project Scheduling, pp. 1–26. Elsevier, Amsterdam (1989)

    Google Scholar 

  14. Pritsker, A.B., Watters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manage. Sci. 16, 93–108 (1969)

    Article  Google Scholar 

  15. Roslöf, J., Harjunkoski, I., Westerlund, T., Isaksson, J.: Solving a large-scale industrial scheduling problem using MILP combined with a heuristic procedure. Eur. J. Oper. Res. 138(1), 29–42 (2002)

    Article  Google Scholar 

  16. Schniederjans, M.J.: Goal Programming: Methodology and Applications. Kluwer Academic Publishers, Boston, MA (1995)

    Book  Google Scholar 

  17. Sousa, J.P., Wolsey, L.A.: A time indexed formulation of non-preemptive single machine scheduling problems. Math. Program. 54, 353–367 (1992)

    Article  Google Scholar 

  18. Talbot, F.B., Patterson, J.H.: An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems. Manage. Sci. 24, 1163–1174 (1978)

    Article  Google Scholar 

  19. Tavares, L.V.: A review on the contributions of operational research to project management. In: Proceedings of the 14th European Conference on Operational Research. The Hebrew University, Jerusalem (1995)

    Google Scholar 

  20. van den Akker, M.: LP-Based Solution Methods for Single-Machine Scheduling Problems. PhD Thesis, Eindhoven University of Technology, Eindhoven (1994)

    Google Scholar 

  21. Westerlund, J., Hästbacka, M., Forssell, S., Westerlund, T.: A mixed-time MILP scheduling model. Ind. Eng. Chem. Res. 46, 2781–2796 (2007)

    Article  Google Scholar 

  22. Westerlund, J., Papageorgiou, L.G., Westerlund, T.: A MILP model for N-dimensional allocation. Comput. Chem. Eng. 31(12), 1702–1714 (2007)

    Article  Google Scholar 

  23. Wolsey, L.A.: Uncapacitated lot-sizing problems with start-up costs. Oper. Res. 37, 741–747 (1989)

    Article  Google Scholar 

  24. Wolsey, L.A.: Valid inequalities for 0-1 knapsacks and MIPS with generalised upper bound constraints. Discr. Appl. Math. 29, 251–261 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

10.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kallrath, J. (2021). How Optimization Is Used in Practice: Case Studies in Integer Programming. In: Business Optimization Using Mathematical Programming. International Series in Operations Research & Management Science, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-030-73237-0_10

Download citation

Publish with us

Policies and ethics