Skip to main content

Precursor Lymphoid Neoplasms

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1737 Accesses

Abstract

Precursor lymphoid neoplasm consists of mainly B lymphoblastic leukemia/lymphoma (B-ALL) and T lymphoblastic leukemia/lymphoma (T-ALL). B-ALL has characteristic molecular genetic profiles, including cytogenetic and molecular changes, such as BCR-ABL1 fusion and KMT2A/MLL translocations. B-ALL with different recurrent chromosomal abnormalities has been recognized as B-ALL subtypes since they demonstrate distinct clinical or prognostic features, including two new entities, B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21) and BCR-ABL1-like B-ALL. Molecular genetic studies on B-ALL have extended our understanding of the genetic landscape of B-ALL, and the gene mutations or aberrations involved in various key pathways have been illustrated. T-ALL has recurrent cytogenetic changes such as translocations involving TR loci and characteristic molecular alterations involved in different pathways including NOTCH1 activating mutations and loss of CDKN2A/2B locus. A subtype of T-ALL, early T-cell precursor lymphoblastic leukemia (ETP-ALL), demonstrates different molecular genetic profiles from other T-ALL, harboring gene mutations more often associated with acute myeloid leukemia. Furthermore, molecular methodologies recommended in initial B-ALL and T-ALL workup and minimal residual disease (MRD) detection have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Haas V, et al. Initial diagnostic work-up of acute leukemia: ASCO clinical practice guideline endorsement of the College of American Pathologists and American Society of hematology guideline. J Clin Oncol. 2019;37(3):239–53.

    Article  PubMed  Google Scholar 

  2. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines) acute lymphoblastic leukemia (Version 2.2020). 2020 [cited 2020 Nov 19]; Available from: https://www.nccn.org/professionals/physician_gls/pdf/all.pdf.

  3. Harris MH, et al. Genetic testing in the diagnosis and biology of acute leukemia. Am J Clin Pathol. 2019;152(3):322–46.

    Article  CAS  PubMed  Google Scholar 

  4. Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moorman AV, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11(5):429–38.

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Jeha S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 2007;6(2):149–65.

    Article  CAS  PubMed  Google Scholar 

  7. Swerdlow S, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues, World Health Organization classification of tumours. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  8. Mrozek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5):991–1010. v

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu-Dumlao T, et al. Philadelphia-positive acute lymphoblastic leukemia: current treatment options. Curr Oncol Rep. 2012;14(5):387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Branford S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99(9):3472–5.

    Article  CAS  PubMed  Google Scholar 

  11. Soverini S, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on chronic myeloid leukemia. Clin Cancer Res. 2006;12(24):7374–9.

    Article  CAS  PubMed  Google Scholar 

  12. Shah NP, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  13. Bitencourt R, Zalcberg I, Louro ID. Imatinib resistance: a review of alternative inhibitors in chronic myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33(6):470–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wetzler M, et al. Additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia group B. Br J Haematol. 2004;124(3):275–88.

    Article  PubMed  Google Scholar 

  15. Martinelli G, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202–7.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer C, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013;27(11):2165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr. 2017;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 2009;144(2):147–56.

    Article  PubMed  Google Scholar 

  19. Nachman JB, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110(4):1112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison CJ, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125(5):552–9.

    Article  PubMed  Google Scholar 

  21. Safavi S, et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia. 2013;27(1):248–50.

    Article  CAS  PubMed  Google Scholar 

  22. Charrin C, et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood. 2004;104(8):2444–51.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 2011;118(11):3080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiaretti S, et al. TP53 mutations are frequent in adult acute lymphoblastic leukemia cases negative for recurrent fusion genes and correlate with poor response to induction therapy. Haematologica. 2013;98(5):e59–61.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stengel A, et al. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  26. Muhlbacher V, et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer. 2014;53(6):524–36.

    Article  PubMed  CAS  Google Scholar 

  27. Holmfeldt L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Comeaux EQ, Mullighan CG. TP53 mutations in hypodiploid acute lymphoblastic leukemia. Cold Spring Harb Perspect Med. 2017;7(3):a026286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qian M, et al. TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J Clin Oncol. 2018;36(6):591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salmoiraghi S, et al. Mutations of TP53 gene in adult acute lymphoblastic leukemia at diagnosis do not affect the achievement of hematologic response but correlate with early relapse and very poor survival. Haematologica. 2016;101(6):e245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hof J, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29(23):3185–93.

    Article  PubMed  Google Scholar 

  32. Dyer MJ, et al. Immunoglobulin heavy chain locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia: rare clinical curios or potent genetic drivers? Blood. 2010;115(8):1490–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ghazavi F, et al. Molecular basis and clinical significance of genetic aberrations in B-cell precursor acute lymphoblastic leukemia. Exp Hematol. 2015;43(8):640–53.

    Article  CAS  PubMed  Google Scholar 

  34. de Boer J, et al. The E2A-HLF oncogenic fusion protein acts through Lmo2 and Bcl-2 to immortalize hematopoietic progenitors. Leukemia. 2011;25(2):321–30.

    Article  PubMed  CAS  Google Scholar 

  35. Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012;26(3):123–35.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson RC, et al. Cytogenetic variation of B-lymphoblastic leukemia with intrachromosomal amplification of chromosome 21 (iAMP21): a multi-institutional series review. Am J Clin Pathol. 2015;144(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  37. Moorman AV, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30.

    Article  CAS  PubMed  Google Scholar 

  38. Harrison CJ. Blood spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125(9):1383–6.

    Article  CAS  PubMed  Google Scholar 

  39. Den Boer ML, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.

    Article  CAS  Google Scholar 

  40. Mullighan CG, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boer JM, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016;101(4):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts KG, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Weston BW, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6.

    Article  PubMed  Google Scholar 

  45. Ding YY, et al. Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure. Haematologica. 2018;103(9):e427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frisch A, Ofran Y. How I diagnose and manage Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica. 2019;104(11):2135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herold T, Gokbuget N. Philadelphia-like acute lymphoblastic leukemia in adults. Curr Oncol Rep. 2017;19(5):31.

    Article  PubMed  CAS  Google Scholar 

  48. Harvey RC, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116(23):4874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol. 2015;12(6):344–57.

    Article  CAS  PubMed  Google Scholar 

  50. Mullighan CG, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.

    Article  CAS  PubMed  Google Scholar 

  51. Liu YF, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 2016;8:173–83.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol. 2003;81(3):171–5.

    Article  CAS  PubMed  Google Scholar 

  53. Georgopoulos K, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79(1):143–56.

    Article  CAS  PubMed  Google Scholar 

  54. Ensor HM, et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood. 2011;117(7):2129–36.

    Article  CAS  PubMed  Google Scholar 

  55. Hertzberg L, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the international BFM study group. Blood. 2010;115(5):1006–17.

    Article  CAS  PubMed  Google Scholar 

  56. Mullighan CG, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4.

    Article  CAS  PubMed  Google Scholar 

  57. Olsson L, Johansson B. Ikaros and leukaemia. Br J Haematol. 2015;169(4):479–91.

    Article  CAS  PubMed  Google Scholar 

  58. Joshi I, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15(3):294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yao QM, et al. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia. BMC Cancer. 2016;16(1):269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Boer JM, et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia. 2016;30(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  61. Clappier E, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia. 2015;29(11):2154–61.

    Article  CAS  PubMed  Google Scholar 

  62. Stanulla M, Cave H, Moorman AV. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood. 2020;135(4):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buitenkamp TD, et al. Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia. 2012;26(10):2204–11.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, et al. Advances in B-lymphoblastic leukemia: cytogenetic and genomic lesions. Ann Diagn Pathol. 2016;23:43–50.

    Article  PubMed  Google Scholar 

  65. Tasian SK, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120(4):833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nebral K, et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia. 2009;23(1):134–43.

    Article  CAS  PubMed  Google Scholar 

  67. Shah S, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Auer F, et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia. 2014;28(5):1136–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mullighan CG, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Inthal A, et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012;26(8):1797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaliova M, et al. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia. 2014;28(1):182–5.

    Article  CAS  PubMed  Google Scholar 

  72. Clappier E, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  73. Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2012;2012:389–96.

    Article  PubMed  Google Scholar 

  74. Della Starza I, et al. Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances. Front Oncol. 2019;9:726.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jennings LJ, et al. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 2014;16(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  76. Coccaro N, et al. Droplet digital PCR is a robust tool for monitoring minimal residual disease in adult Philadelphia-positive acute lymphoblastic leukemia. J Mol Diagn. 2018;20(4):474–82.

    Article  PubMed  Google Scholar 

  77. Faham M, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Dongen JJ, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bruggemann M, et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia. 2019;33(9):2241–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kim IS. Minimal residual disease in acute lymphoblastic leukemia: technical aspects and implications for clinical interpretation. Blood Res. 2020;55(S1):S19–26.

    Article  PubMed  Google Scholar 

  81. Reyes-Barron C, et al. Next-generation sequencing for minimal residual disease surveillance in acute lymphoblastic leukemia: an update. Crit Rev Oncog. 2017;22(5–6):559–67.

    Article  PubMed  Google Scholar 

  82. Liu Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Girardi T, et al. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.

    Article  CAS  PubMed  Google Scholar 

  84. Kimura S, Mullighan CG. Molecular markers in ALL: clinical implications. Best Pract Res Clin Haematol. 2020;33(3):101193.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fransecky L, et al. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL. J Hematol Oncol. 2016;9(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sajaroff EO, et al. B-cell acute lymphoblastic leukemia with mature phenotype and MLL rearrangement: report of five new cases and review of the literature. Leuk Lymphoma. 2016;57(10):2289–97.

    Article  PubMed  Google Scholar 

  87. Castaneda Puglianini O, Papadantonakis N. Early precursor T-cell acute lymphoblastic leukemia: current paradigms and evolving concepts. Adv Hematol. 2020;11:2040620720929475.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X. (2021). Precursor Lymphoid Neoplasms. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics