Skip to main content

Myeloproliferative Neoplasms, Myelodysplastic/Myeloproliferative Neoplasms, and Myelodysplastic Syndromes

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1743 Accesses

Abstract

In the 2017 WHO classification, chronic myeloid neoplasms include myeloproliferative neoplasms (MPNs), myelodysplastic/myeloproliferative neoplasms (MDS/MPNs), myelodysplastic syndrome (MDS), mastocytosis and myeloid/lymphoid neoplasms with eosinophilia with rearrangements in FGFR1, PDGFRA, PDGFRB, or PCM1-JAK2 fusions. This chapter focuses on the molecular and cytogenetic features of the chronic myeloid neoplasms, covering the underlying genetic abnormalities, and the molecular markers with important diagnostic, prognostic, therapeutic, and disease monitoring utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.

    Article  CAS  PubMed  Google Scholar 

  2. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88(7):2375–84.

    Article  CAS  PubMed  Google Scholar 

  3. Foroni L, et al. Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol. 2011;153(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  4. Bennour A, et al. Comprehensive analysis of BCR/ABL variants in chronic myeloid leukemia patients using multiplex RT-PCR. Clin Lab. 2012;58(5–6):433–9.

    CAS  PubMed  Google Scholar 

  5. Bennour A, Saad A, Sennana H. Chronic myeloid leukemia: relevance of cytogenetic and molecular assays. Crit Rev Oncol Hematol. 2016;97:263–74.

    Article  PubMed  Google Scholar 

  6. Faderl S, Jeha S, Kantarjian HM. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2003;98(7):1337–54.

    Article  PubMed  Google Scholar 

  7. Melo JV, et al. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–11.

    CAS  PubMed  Google Scholar 

  8. Hochhaus A, et al. A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood. 1996;88(6):2236–40.

    Article  CAS  PubMed  Google Scholar 

  9. Pane F, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88(7):2410–4.

    Article  CAS  PubMed  Google Scholar 

  10. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  11. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol. 2020; 96(6):691–709.

    Google Scholar 

  12. Yeung CC, Egan D, Radich JP. Molecular monitoring of chronic myeloid leukemia: present and future. Expert Rev Mol Diagn. 2016;16(10):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. 2015;94(Suppl 2):S107–21.

    Article  PubMed  CAS  Google Scholar 

  14. Mondal BC, et al. e19a2 BCR-ABL fusion transcript in typical chronic myeloid leukaemia: a report of two cases. J Clin Pathol. 2006;59(10):1102–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schoch C, et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia. 2002;16(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tohami T, Nagler A, Amariglio N. Laboratory tools for diagnosis and monitoring response in patients with chronic myeloid leukemia. Isr Med Assoc J. 2012;14(8):501–7.

    PubMed  Google Scholar 

  17. Akard LP, et al. Correlations between cytogenetic and molecular monitoring among patients with newly diagnosed chronic myeloid leukemia in chronic phase: post hoc analyses of the rationale and insight for Gleevec high-dose therapy study. Arch Pathol Lab Med. 2014;138(9):1186–92.

    Article  PubMed  Google Scholar 

  18. Radich JP, et al. Chronic myeloid Leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(9):1108–35.

    Article  Google Scholar 

  19. Hughes T, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bose S, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92(9):3362–7.

    Article  CAS  PubMed  Google Scholar 

  21. Deininger MW. Milestones and monitoring in patients with CML treated with imatinib. Hematology Am Soc Hematol Educ Program. 2008;(1):419–26.

    Google Scholar 

  22. Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385(9976):1447–59.

    Article  PubMed  Google Scholar 

  23. Feldman E, et al. The emergence of Ph-, trisomy −8+ cells in patients with chronic myeloid leukemia treated with imatinib mesylate. Exp Hematol. 2003;31(8):702–7.

    Article  CAS  PubMed  Google Scholar 

  24. Griesshammer M, et al. Karyotype abnormalities and their clinical significance in blast crisis of chronic myeloid leukemia. J Mol Med (Berl). 1997;75(11–12):836–8.

    Article  CAS  Google Scholar 

  25. Mitelman F. The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma. 1993;11(Suppl 1):11–5.

    Article  PubMed  Google Scholar 

  26. Fabarius A, et al. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol. 2015;94(12):2015–24.

    Article  PubMed  Google Scholar 

  27. Verma D, et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer. 2010;116(11):2673–81.

    CAS  PubMed  Google Scholar 

  28. Wang W, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127(22):2742–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson PA, Kantarjian HM, Cortes JE. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;90(10):1440–54.

    Article  PubMed  Google Scholar 

  30. Vinhas R, et al. Current trends in molecular diagnostics of chronic myeloid leukemia. Leuk Lymphoma. 2017;58(8):1791–804.

    Article  CAS  PubMed  Google Scholar 

  31. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    Article  CAS  PubMed  Google Scholar 

  32. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  33. Pietra D, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111(3):1686–9.

    Article  CAS  PubMed  Google Scholar 

  34. Michiels JJ, et al. 2016 WHO clinical molecular and pathological criteria for classification and staging of Myeloproliferative neoplasms (MPN) caused by MPN driver mutations in the JAK2, MPL and CALR genes in the context of new 2016 WHO classification: prognostic and therapeutic implications. Maedica. 2016;11(1):5–25.

    PubMed  PubMed Central  Google Scholar 

  35. Tefferi A, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7.

    Article  CAS  PubMed  Google Scholar 

  36. Barbui T, et al. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood Rev. 2016;30(6):453–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lundberg P, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.

    Article  CAS  PubMed  Google Scholar 

  38. Vannucchi AM, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9.

    Article  CAS  PubMed  Google Scholar 

  39. Guglielmelli P, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804–10.

    Article  CAS  PubMed  Google Scholar 

  40. Swerdlow SH, Campo E, Harris N, Jaffe E, Pileri S, Stein H. WHO classification of tumours of haematopoietic and lymphoid tissues, vol. 2. 4th ed; IRAC: Lyon 2017.

    Google Scholar 

  41. Pardanani A, et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013;27(9):1870–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria. Blood Cancer J. 2018;8(2):19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maxson JE, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368(19):1781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  45. Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and management. Am J Hematol. 2018;93(4):578–87.

    Article  PubMed  Google Scholar 

  46. Fleischman AG, et al. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood. 2013;122(22):3628–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pardanani A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol. 2019;94(3):363–77.

    PubMed  Google Scholar 

  49. Wilson TM, et al. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis. Haematologica. 2011;96(3):459–63.

    Article  CAS  PubMed  Google Scholar 

  50. Traina F, et al. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLoS One. 2012;7(8):e43090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwaab J, et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood. 2013;122(14):2460–6.

    Article  CAS  PubMed  Google Scholar 

  52. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–14.

    Article  CAS  PubMed  Google Scholar 

  53. Gotlib J. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92(11):1243–59.

    Article  CAS  PubMed  Google Scholar 

  54. Vardiman JW. The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):16–20.

    Article  CAS  PubMed  Google Scholar 

  55. Gotlib J, et al. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood. 2004;103(8):2879–91.

    Article  CAS  PubMed  Google Scholar 

  56. Cools J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.

    Article  CAS  PubMed  Google Scholar 

  57. Schwaab J, et al. Diagnostic challenges in the work up of hypereosinophilia: pitfalls in bone marrow core biopsy interpretation. Ann Hematol. 2016;95(4):557–62.

    Article  CAS  PubMed  Google Scholar 

  58. Metzgeroth G, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–8.

    Article  CAS  PubMed  Google Scholar 

  59. Patnaik MM, et al. Chronic myelomonocytic leukaemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165(3):273–86.

    Article  PubMed  Google Scholar 

  60. Such E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83.

    Article  PubMed  Google Scholar 

  61. Cervera N, et al. Gene mutations differently impact the prognosis of the myelodysplastic and myeloproliferative classes of chronic myelomonocytic leukemia. Am J Hematol. 2014;89(6):604–9.

    Article  CAS  PubMed  Google Scholar 

  62. Damm F, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169–77.

    Article  CAS  PubMed  Google Scholar 

  63. Daver N, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ernst T, et al. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica. 2010;95(9):1473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gelsi-Boyer V, et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer. 2008;8:299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Grossmann V, et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia. 2011;25(5):877–9.

    Article  CAS  PubMed  Google Scholar 

  67. Itzykson R, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    Article  CAS  PubMed  Google Scholar 

  68. Kohlmann A, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28(24):3858–65.

    Article  CAS  PubMed  Google Scholar 

  69. Makishima H, et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol. 2009;27(36):6109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Onida F, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.

    Article  CAS  PubMed  Google Scholar 

  71. Patnaik MM, et al. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 2013;88(3):201–6.

    Article  CAS  PubMed  Google Scholar 

  72. Mughal TI, et al. An international MDS/MPN working Group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100(9):1117–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Padron E, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang G, et al. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol. 2014;89(8):813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Patnaik MM, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12.

    Article  CAS  PubMed  Google Scholar 

  76. Wassie EA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French consortium study. Am J Hematol. 2014;89(12):1111–5.

    Article  CAS  PubMed  Google Scholar 

  77. Elena C, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laborde RR, et al. SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia. 2013;27(10):2100–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peng J, et al. Chronic myelomonocytic leukemia with nucleophosmin (NPM1) mutation. Eur J Haematol. 2016;96(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  80. Vallapureddy R, et al. Nucleophosmin 1 (NPM1) mutations in chronic myelomonocytic leukemia and their prognostic relevance. Am J Hematol. 2017;92(10):E614–e618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ricci C, et al. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant. Clin Cancer Res. 2010;16(8):2246–56.

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka TN, Bejar R. MDS overlap disorders and diagnostic boundaries. Blood. 2019;133(10):1086–95.

    Article  CAS  PubMed  Google Scholar 

  83. Abdel-Wahab O, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25(7):1200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hernandez JM, et al. Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia. Ann Oncol. 2000;11(4):441–4.

    Article  CAS  PubMed  Google Scholar 

  85. Talati C, Padron E. An exercise in extrapolation: clinical Management of Atypical CML, MDS/MPN-unclassifiable, and MDS/MPN-RS-T. Curr Hematol Malig Rep. 2016;11(6):425–33.

    Article  PubMed  Google Scholar 

  86. Wang SA, et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123(17):2645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meggendorfer M, et al. Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia. Haematologica. 2014;99(12):e244–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Patnaik MM, et al. Targeted next generation sequencing and identification of risk factors in World Health Organization defined atypical chronic myeloid leukemia. Am J Hematol. 2017;92(6):542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Piazza R, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  90. Kosmider O, et al. Mutation of the colony-stimulating factor-3 receptor gene is a rare event with poor prognosis in chronic myelomonocytic leukemia. Leukemia. 2013;27(9):1946–9.

    Article  CAS  PubMed  Google Scholar 

  91. Trimarchi T, Ntziachristos P, Aifantis I. A new player SETs in myeloid malignancy. Nat Genet. 2013;45(8):846–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Makishima H, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45(8):942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gambacorti-Passerini CB, et al. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood. 2015;125(3):499–503.

    Article  CAS  PubMed  Google Scholar 

  94. Reiter A, et al. Molecular basis of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2009;94(12):1634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caye A, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334–40.

    Article  CAS  PubMed  Google Scholar 

  96. Niemeyer CM. JMML genomics and decisions. Hematology Am Soc Hematol Educ Program. 2018;2018(1):307–12.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stieglitz E, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Murakami N, et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018;131(14):1576–86.

    Article  CAS  PubMed  Google Scholar 

  99. Niemeyer CM, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European working group on Myelodysplastic syndromes in childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.

    CAS  PubMed  Google Scholar 

  100. Strullu M, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51(10):689–97.

    Article  CAS  PubMed  Google Scholar 

  101. Malcovati L, Cazzola M. Refractory anemia with ring sideroblasts. Best Pract Res Clin Haematol. 2013;26(4):377–85.

    Article  CAS  PubMed  Google Scholar 

  102. Papaemmanuil E, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Malcovati L, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ceesay MM, et al. The JAK2 V617F mutation is rare in RARS but common in RARS-T. Leukemia. 2006;20(11):2060–1.

    Article  CAS  PubMed  Google Scholar 

  105. Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis: “2019 update on diagnosis, risk-stratification, and management”. Am J Hematol. 2019;94(4):475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jeromin S, et al. Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations. Haematologica. 2015;100(4):e125–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Visconte V, et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2012;26(3):542–5.

    Article  CAS  PubMed  Google Scholar 

  108. Haase D. Cytogenetic features in myelodysplastic syndromes. Ann Hematol. 2008;87(7):515–26.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101(3):260–71.

    Article  CAS  PubMed  Google Scholar 

  110. Nagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia. 2019;33(12):2779–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. List A, Ebert BL, Fenaux P. A decade of progress in myelodysplastic syndrome with chromosome 5q deletion. Leukemia. 2018;32(7):1493–9.

    Article  PubMed  Google Scholar 

  112. Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ribezzo F, et al. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q-syndrome. Leukemia. 2019;33(7):1759–72.

    Article  CAS  PubMed  Google Scholar 

  114. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17(9):513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee JH, List A, Sallman DA. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. Eur J Haematol. 2019;102(3):203–9.

    Article  PubMed  Google Scholar 

  116. Germing U, et al. Survival, prognostic factors and rates of leukemic transformation in 381 untreated patients with MDS and del(5q): a multicenter study. Leukemia. 2012;26(6):1286–92.

    Article  CAS  PubMed  Google Scholar 

  117. Mallo M, et al. Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia. 2011;25(1):110–20.

    Article  CAS  PubMed  Google Scholar 

  118. Schanz J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pellagatti A, et al. Whole-exome sequencing in del(5q) myelodysplastic syndromes in transformation to acute myeloid leukemia. Leukemia. 2014;28(5):1148–51.

    Article  CAS  PubMed  Google Scholar 

  120. Jädersten M, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29(15):1971–9.

    Article  PubMed  Google Scholar 

  121. Gill H, Leung AY, Kwong YL. Molecular and cellular mechanisms of myelodysplastic syndrome: implications on targeted therapy. Int J Mol Sci. 2016;17(4):440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Papaemmanuil E, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27. quiz 3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Greenberg PL. Molecular and genetic features of myelodysplastic syndromes. Int J Lab Hematol. 2012;34(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  124. DeZern AE, Malcovati L, Ebert BL. CHIP, CCUS, and other acronyms: definition, implications, and impact on practice. Am Soc Clin Oncol Educ Book. 2019;39:400–10.

    Article  PubMed  Google Scholar 

  125. Steensma DP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Zheng, G. (2021). Myeloproliferative Neoplasms, Myelodysplastic/Myeloproliferative Neoplasms, and Myelodysplastic Syndromes. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics