Skip to main content

The Case for Quantifying Artificial General Intelligence with Entropy Semifields

  • Chapter
  • First Online:
Artificial Intelligence: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 973))

  • 1371 Accesses

Abstract

In this chapter we hypotesize that Information Semifields are the underlying calculi that brains operate on and we postulate that strong artificial intelligences should try to imitate them. Information semifields have recently been proposed to describe the calculations that pertain to the manipulation of Renyi entropies. These are semifields that emerge from the pseudo-calculus by the rational choice of generator functions that respect the classical postulates of information theory, and align with the Renyi entropy and divergence. To support our hypothesis we gather evidence in this respect from Neuroscience, Machine Learning, Cognitive Computation, Information Theory and Complex Systems theory. This evidence would also constrain other attempts at describing the workings of an intelligence embodied in a brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Neuromorphic in a wide sense not necessarily hardware systems.

References

  1. Hutson, M.: Core progress in AI has stalled in some fields. Science 368(6494), 927 (2020)

    Article  Google Scholar 

  2. Sejnowsky, T.J.: The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of Sciences (2020)

    Google Scholar 

  3. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  4. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., Eleftheriou, E.: Low-power neuromorphic hardware for signal processing applications: a review of architectural and system-level design approaches. IEEE Signal Process. Mag. 36(6), 97–110 (2019)

    Article  Google Scholar 

  6. Sevuktekin, N.C., Varshney, L.R., Hanumolu, P.K., Singer, A.C.: Signal processing foundations for time-based signal representations: neurobiological parallels to engineered systems designed for energy efficiency or hardware simplicity. IEEE Signal Process. Mag. 36(6), 38–50 (2019)

    Google Scholar 

  7. Li, G., Deng, L., Chua, Y., Li, P., Neftci, E.O., Li, H.: Editorial: spiking neural network learning, benchmarking, programming and executing. Front. Neurosci. 14, 276 (2020)

    Google Scholar 

  8. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat. ed.) (2010)

    Google Scholar 

  9. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. Cognitive Science and Human Experience, revised edn. MIT Press, Cambridge (2017)

    Book  Google Scholar 

  10. Capone, F., Paolucci, M., Assenza, F., Brunelli, N., Ricci, L., Florio, L., Di Lazzaro, V.: Canonical cortical circuits: current evidence and theoretical implications. Neurosci. Neuroeconomics 1–8, (2016)

    Google Scholar 

  11. Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., Kennedy, H.: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522(1), 225–259 (2013)

    Article  Google Scholar 

  12. Fuster, J.M.: Upper processing stages of the perception-action cycle. Trends Cogn. Sci. 8(4), 143–145 (2004)

    Article  Google Scholar 

  13. Marcus, G.: Kluge: the haphazard evolution of the human mind. Houghton MIfflin Company, Boston (2008)

    Google Scholar 

  14. Werner, G.: Fractals in the nervous system: conceptual implications for theoretical neuroscience. Front Physiol. 1, 1–28 (2010)

    Google Scholar 

  15. Anderson, R.B.: The power law as an emergent property. Mem. Cogn. 29(7), 1061–1068 (2001)

    Article  Google Scholar 

  16. Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J.R., De Weerd, P., Kennedy, H., Fries, P.: Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85(2), 390–401 (2015)

    Article  Google Scholar 

  17. Palva, S., Palva, J.M.: Roles of brain criticality and multiscale oscillations in temporal predictions for sensorimotor processing. Trends Neurosci. 41(10), 729–743 (2018)

    Article  Google Scholar 

  18. Joglekar, M.R., Mejias, J.F., Yang, G.R., Wang, X.-J.: Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98(1), 222–234 (2018)

    Article  Google Scholar 

  19. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–352 (2006)

    Article  Google Scholar 

  20. Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. (1999)

    Google Scholar 

  21. Arnal, L.H., Giraud, A.-L.: Cortical oscillations and sensory predictions. Trends Cognit. Sci. 16(7), 390–398 (2012)

    Article  Google Scholar 

  22. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  23. Dayan, P., Abbot, L.F.: Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2005)

    Google Scholar 

  24. Razi, A., Friston, K.J.: The connected brain: causality, models, and intrinsic dynamics. IEEE Signal Proc. Mag. 33(3), 14–35 (2016)

    Article  Google Scholar 

  25. Friston, K., Ao, P.: Free energy, value, and attractors. Comput. Math. Methods Med. 5, 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bogacz, R.: A tutorial on the free-energy framework for modelling perception and learning. J. Math. Psychol. 76, 198–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wiiliam, T.: Powers. Living Control Systems. Selected Papers, CSG (1989)

    Google Scholar 

  28. MacKay, D.J.C.: Information Theory. Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  29. Friston, K., Stephan, K., Li, B., Daunizeau, J.: Generalised filtering. Math. Probl. Eng. 2010(3), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. MacKay, D.J.C.: Free energy minimisation algorithm for decoding and cryptanalysis. Electron. Lett. 31, 446–447 (1995)

    Article  Google Scholar 

  31. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  32. Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q.K., Yu, A.B., Kahn, A.E., Medaglia, J.D., Vettel, J.M., Miller, M.B., Grafton, S.T., Bassett, D.S.: Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015)

    Article  Google Scholar 

  33. Schmidt, M., Bakker, R., Hilgetag, C.C., Diesmann, M., van Albada, S.J.: Multi-scale account of the network structure of macaque visual cortex. Brain Struct. Funct. 223(3), 1409–1435 (2018)

    Article  Google Scholar 

  34. Ballard, D.H.: Brain Computation as Hierarchical Abstraction. MIT Press, Cambridge (2015)

    Book  Google Scholar 

  35. Fox, K.: Barrel Cortex. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  36. Sayood, K.: Information theory and cognition: a review. Entropy 20(9), 1–19 (2018)

    Article  Google Scholar 

  37. Deco, G., Kringelbach, M.L.: Hierarchy of information processing in the brain: a novel ‘Intrinsic Ignition’ framework. Neuron 94(5), 961–968 (2017)

    Article  Google Scholar 

  38. Valverde-Albacete, F.J., Peláez-Moreno, C.: The Rényi entropies operate in positive semifields. Entropy 21(8) (2019)

    Google Scholar 

  39. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. New Models and Algorithms. Operations Research Computer Science Interfaces series. Springer, Berlin (2008)

    Google Scholar 

  40. Renyi, A.: Probability Theory. Courier Dover Publications, Mineola (1970)

    MATH  Google Scholar 

  41. Pap, E.: g-calculus. Zbornik Radova Prirodno-Matematichkog Fakulteta. Serija za Matematiku. Review of Research. Faculty of Science. Mathematics Series 23(1), 145–156 (1993)

    Google Scholar 

  42. Grossman, M., Katz, R.: Non-Newtonian Calculus. Lee Press, Pigeon Cove (1972)

    MATH  Google Scholar 

  43. Mesiar, R., Pap, E.: Idempotent integral as limit of g-integrals. Fuzzy Sets Syst. 102(3), 385–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Palva, J.M., Palva, S.: Roles of multiscale brain activity fluctuations in shaping the variability and dynamics of psychophysical performance. Prog. Brain Res. 193, 335–350 (2011)

    Article  Google Scholar 

  45. Siegel, M., Donner, T.H., Engel, A.K.: Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci 13(2), 121–134 (2012)

    Article  Google Scholar 

  46. Zhigalov, A., Arnulfo, G., Nobili, L., Palva, S., Palva, J.M.: Modular co-organization of functional connectivity and scale-free dynamics in the human brain. Netw. Neurosci. 1(2), 143–165 (2017)

    Article  Google Scholar 

  47. Valverde-Albacete, F.J., Peláez-Moreno, C.: The case for shifting the Renyi entropy. Entropy 21(1) (2019)

    Google Scholar 

  48. Butkovič, P.: Max-linear Systems. Theory and Algorithms. Monographs in Mathematics. Springer, Berlin (2010)

    Google Scholar 

  49. Kato, S., Kaplan, H.S., Schrödel, T., Skora, S., Lindsay, T.H., Yemini, E., Lockery, S., Zimmer, M.: Global brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell 163(3), 656–669 (2015)

    Article  Google Scholar 

  50. Kaplan, H.S., Thula, O.S., Khoss, N., Zimmer, M.: Nested neuronal dynamics orchestrate a behavioral hierarchy Across timescales. Neuron 105(3), 562–576.e9 (2020)

    Article  Google Scholar 

  51. Gleeson, P., Lung, D., Grosu, R., Hasani, R., Larson, S.D.: c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 373(1758), 20170379 (2018)

    Google Scholar 

  52. Liu, Q., Kidd, P.B., Dobosiewicz, M., Bargmann, C.I.: C. elegans AWA olfactory neurons fire calcium-mediated all-or-none action potentials. Cell 175(1), 57–70.e17 (2018)

    Google Scholar 

  53. Pradhan, S., Quilez, S., Homer, K., Hendricks, M.: Environmental programming of adult foraging behavior in C. elegans. Curr. Biol. 29(17), 2867–2879.e4 (2019)

    Google Scholar 

  54. Estévez-Albuja, I., Valverde-Albacete, F.J., Peláez-Moreno, C.: Replication of two computational models of locomotion of Caenorhabditis elegans in Brian 2. In: Neuromatch Conference (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Valverde-Albacete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valverde-Albacete, F.J., Peláez-Moreno, C. (2021). The Case for Quantifying Artificial General Intelligence with Entropy Semifields. In: Pap, E. (eds) Artificial Intelligence: Theory and Applications. Studies in Computational Intelligence, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-030-72711-6_5

Download citation

Publish with us

Policies and ethics