Skip to main content

What Information on Volatile Organic Compounds Can Be Obtained from the Data of a Single Measurement Site Through the Use of Artificial Intelligence?

  • Chapter
  • First Online:
Artificial Intelligence: Theory and Applications

Abstract

Increasing air pollutant concentrations over the last few decades have been a focus of contemporary scientific research due to adverse effects on public health, the environment and climate change. In this chapter, we used an innovative integrated methodology for spatio-temporal characterization of sources and concentration forecasts of toxic, mutagenic and carcinogenic representatives of volatile organic species—benzene, toluene, ethylbenzene and xylene, commonly referred to as BTEX. The methodology is based on receptor-oriented air circulation modeling and artificial intelligence implemented through machine learning and explainable artificial intelligence methods. The study covered two years of data obtained from a single monitoring station located at 54a Despota Stefana Boulevard (44\(^{\circ }\)49’68” N, 20\(^{\circ }\)28’04” E). This station was selected from the local and state network for air quality monitoring in the territory of Belgrade. The receptor-oriented modeling was effective for classifying sources of BTEX and the assessment of BTEX concentrations in the Belgrade urban area surrounding the receptor site that was not regularly monitored. The correlations and ratios between BTEX compounds were used for estimating their interrelationships and presence in the air, which contributed to the identification of their origin. Also, this study evaluated the possibilities of BTEX spatio-temporal forecasts based on the integrated methodology. For this purpose, XGBoost was efficient at forecasting BTEX levels, with estimated errors (6–15%) significantly below the uncertainty obtained by conventional models for the evaluation of average annual pollutant concentrations. The results suggest that temperature, wind speed and wind direction represented the main parameters which explain the spatio-temporal distribution of BTEX, while the impact of other factors showed significant variations depending on the locations of the receptor and the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd Hamid, H., Latif, M.T., Nadzir, M.S.M., Uning, R., Khan, M.F., Kannan, N.: Ambient BTEX levels over urban, suburban and rural areas in Malaysia. Air Qual. Atmos. Health 12, 341–351 (2019)

    Article  Google Scholar 

  2. Baltrėnas, P., Baltrėnaitė, E., Šerevičienė, V., Pereira, P.: Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ. Monit. Assess. 182, 115–127 (2011)

    Article  Google Scholar 

  3. Behrens, D.A., Koland, O., Leopold-Wildburger, U.: Why local air pollution is more than daily peaks: modelling policies in a city in order to avoid premature deaths. Cent. Eur. J. Oper. Res. 26, 265–286 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bolden, A.L., Kwiatkowski, C.F., Colborn, T.: New look at BTEX: are ambient levels a problem? Environ. Sci. Technol. 49, 5261–5276 (2015)

    Article  Google Scholar 

  5. Bose, S., Diette, G.B.: Health disparities related to environmental air quality. In: Health Disparities in Respiratory Medicine, pp. 41–58. Humana Press, Cham (2016)

    Google Scholar 

  6. Buczynska, A.J., Krata, A., Stranger, M., Godoi, A.F.L., Kontozova-Deutsch, V., Bencs, L., Naveau, I., Roekens, E., Van Grieken, R.: Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 43, 311–318 (2009)

    Google Scholar 

  7. Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C.A., Apte, J.S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J.: Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. PNAS USA 115, 9592–9597 (2018)

    Google Scholar 

  8. Campbell, P., Zhang, Y., Yan, F., Lu, Z., Streets, D.: Impacts of transportation sector emissions on future US air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Environ. Pollut. 238, 918–930 (2018)

    Google Scholar 

  9. Carter, E., Archer-Nicholls, S., Ni, K., Lai, A.M., Niu, H., Secrest, M.H., Sauer, S.M., Schauer, J.J., Ezzati, M., Wiedinmyer, C., Yang, X.: Seasonal and diurnal air pollution from residential cooking and space heating in the Eastern Tibetan Plateau. Environ. Sci. Technol. 50, 8353–8361 (2016)

    Google Scholar 

  10. Cerón Bretón, J.G., Cerón Bretón, R.M., Martínez Morales, S., Kahl, J.D., Guarnaccia, C., Lara Severino, R.D.C., Rangel Marrón, M., Ramírez Lara, E., Espinosa Fuentes, M.D.L.L., Uc Chi, M.P., Sánchez, G.L.: Health risk assessment of the levels of BTEX in ambient air of one urban site located in Leon, Guanajuato, Mexico during two climatic seasons. Atmosphere 11, 165 (2020)

    Google Scholar 

  11. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  12. Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H.R., Miri, M., Baghani, A.N., Delikhoon, M., Mahvi, A.H., Rashidi, M.: Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 155, 133–143 (2018)

    Article  Google Scholar 

  13. Fowler, D., Brimblecombe, P., Burrows, J., Heal, M.R., Grennfelt, P., Stevenson, D.S., Jowett, A., Nemitz, E., Coyle, M., Lui, X., Chang, Y.: A chronology of global air quality. Philos. Trans. R. Soc. A 378, 20190314 (2020)

    Google Scholar 

  14. Gallego, E., Roca, F.X., Guardino, X., Rosell, M.G.: Indoor and outdoor BTX levels in Barcelona city metropolitan area and Catalan rural areas. J. Environ. Sci. 20, 1063–1069 (2008)

    Google Scholar 

  15. García, M.V., Aznarte, J.L.: Shapley additive explanations for NO2 forecasting. Ecol. Inform. 56, (2020)

    Google Scholar 

  16. Hajizadeh, Y., Mokhtari, M., Faraji, M., Mohammadi, A., Nemati, S., Ghanbari, R., Abdolahnejad, A., Fard, R.F., Nikoonahad, A., Jafari, N., Miri, M.: Trends of BTEX in the central urban area of Iran: a preliminary study of photochemical ozone pollution and health risk assessment. Atmos. Pollut. Res. 9, 220–229 (2018)

    Article  Google Scholar 

  17. Holgate, S.T.: Every breath we take: the lifelong impact of air pollution-a call for action. Clin. Med. 17, 8 (2017)

    Article  Google Scholar 

  18. Kirman, C.R., Aylward, L.L., Blount, B.C., Pyatt, D.W., Hays, S.M.: Evaluation of NHANES biomonitoring data for volatile organic chemicals in blood: application of chemical-specific screening criteria. J. Expo. Sci. Environ. Epidemiol. 22, 24–34 (2012)

    Article  Google Scholar 

  19. Landrigan, P.J.: Air pollution and health. Lancet Public Health 2, e4–e5 (2017)

    Article  Google Scholar 

  20. Lerner, J.E.C., Kohajda, T., Aguilar, M.E., Massolo, L.A., Sánchez, E.Y., Porta, A.A., Opitz, P., Wichmann, G., Herbarth, O., Mueller, A.: Improvement of health risk factors after reduction of VOC concentrations in industrial and urban area. Environ. Sci. Pollut. Res. 21, 9676–9688 (2014)

    Article  Google Scholar 

  21. Lundberg S., Lee, S.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  22. Liao, Z., Gao, M., Sun, J., Fan, S.: The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 607, 838–846 (2017)

    Article  Google Scholar 

  23. Liu, A., Hong, N., Zhu, P., Guan, Y.: Understanding benzene series (BTEX) pollutant load characteristics in the urban environment. Sci. Total Environ. 619, 938–945 (2018)

    Article  Google Scholar 

  24. Ly, H.B., Le, L.M., Phi, L.V., Phan, V.H., Tran, V.Q., Pham, B.T., Le, T.T., Derrible, S.: Development of an AI model to measure traffic air pollution from multisensor and weather data. Sensors 19, 4941 (2019)

    Article  Google Scholar 

  25. Marć, M., Namieśnik, J., Zabiegała, B.: BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual. Atmos. Health 7, 489–504 (2014)

    Article  Google Scholar 

  26. Milazzo, M.J., Gohlke, J.M., Gallagher, D.L., Scott, A.A., Zaitchik, B.F., Marr, L.C.: Potential for city parks to reduce exposure to BTEX in air. Environ. Sci. Process. Impacts 21, 40–50 (2019)

    Article  Google Scholar 

  27. Ning, G., Yim, S.H.L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J., Shang, K.: Synergistic effects of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of China. Clim. Dyn. 53, 6729–6744 (2019)

    Article  Google Scholar 

  28. Rattanajongjitrakorn, P., Prueksasit, T.: Temporal variation of BTEX at the area of petrol station in Bangkok, Thailand. APCBEE Procedia 10, 37–41 (2014)

    Article  Google Scholar 

  29. Słomińska, M., Konieczka, P., Namieśnik, J.: The fate of BTEX compounds in ambient air. Crit. Rev. Environ. Sci. Technol. 44, 455–472 (2014)

    Article  Google Scholar 

  30. Stingone, J.A., McVeigh, K.H., Claudio, L.: Early-life exposure to air pollution and greater use of academic support services in childhood: a population-based cohort study of urban children. Environ. Health 16, 2 (2017)

    Article  Google Scholar 

  31. Stojić, A., Stanić, N., Vuković, G., Stanišić, S., Perišić, M., Šoštarić, A., Lazić, L.: Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition. Sci. Total Environ. 653, 140–147 (2019)

    Article  Google Scholar 

  32. Stojić, A., Stojić, S.S., Mijić, Z., Šoštarić, A., Rajšić, S.: Spatio-temporal distribution of VOC emissions in urban area based on receptor modelling. Atmos. Environ. 106, 71–79 (2015b)

    Article  Google Scholar 

  33. Stojić, A., Stojić, S.S., Šoštarić, A., Ilić, L., Mijić, Z., Rajšić, S.: Characterization of VOC sources in urban area based on PTR-MS measurements and receptor modelling. Environ. Sci. Pollut. Res. 22, 13137–13152 (2015a)

    Article  Google Scholar 

  34. Stojić, A., Stojić, S.S.: The innovative concept of three-dimensional hybrid receptor modeling. Atmos. Environ. 164, 216–223 (2017)

    Article  Google Scholar 

  35. Šoštarić, A., Stojić, S.S., Vuković, G., Mijić, Z., Stojić, A., Gržetić, I.: Rainwater capacities for BTEX scavenging from ambient air. Atmos. Environ. 168, 46–54 (2017)

    Article  Google Scholar 

  36. Šoštarić, A., Stojić, A., Stojić, S.S., Gržetić, I.: Quantification and mechanisms of BTEX distribution between aqueous and gaseous phase in a dynamic system. Chemosphere 144, 721–727 (2016)

    Article  Google Scholar 

  37. Stanišić, S., Perišić, M., Jovanović, G., Milićević, T., Romanić, S.H., Jovanović, A., Šoštarić, A., Udovičić, V., Stojić, A.: The PM2.5-bound polycyclic aromatic hydrocarbon behavior in indoor and outdoor environments, Part I: emission sources. Environ. Res. 110520 (2020b)

    Google Scholar 

  38. Stanišić, S., Perišić, M., Stojić, A.: The use of innovative methodology for the characterization of benzene, toluene, ethylbenzene and xylene sources in the Belgrade area. In: Sinteza International Scientific Conference on Information Technology and Data Related Research, Belgrade, Serbia (2020a)

    Google Scholar 

  39. Truong, S.C., Lee, M.I., Kim, G., Kim, D., Park, J.H., Choi, S.D., Cho, G.H.: Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model. Atmos. Environ. 144, 146–159 (2016)

    Article  Google Scholar 

  40. U.S. EPA.: Chemical Data Reporting. United States Environmental Protection Agency, Washington, DC, USA (2016). https://www.epa.gov/sites/production/files/2014-11/documents/2nd_cdr_snapshot_5_19_14.pdf

  41. Vardoulakis, S., Solazzo, E., Lumbreras, J.: Intra-urban and street scale variability of BTEX, NO2 and O3 in Birmingham, UK: implications for exposure assessment. Atmos. Environ. 45, 5069–5078 (2011)

    Article  Google Scholar 

  42. Werder, E.J., Engel, L.S., Blair, A., Kwok, R.K., McGrath, J.A., Sandler, D.P.: Blood BTEX levels and neurologic symptoms in Gulf states residents. Environ. Res. 175, 100–107 (2019)

    Article  Google Scholar 

  43. Wright, C.Y., Millar, D.A.: A global statement for air pollution and health. Clean Air J. 29, 1–2 (2019)

    Google Scholar 

Download references

Acknowledgements

Funding: The authors acknowledge funding provided by the Institute of Physics Belgrade, through a grant by the Ministry of Education, Science and Technological Development of the Republic of Serbia, the Science Fund of the Republic of Serbia #GRANT No. 6524105, AI - ATLAS, and Green Fund of the Ministry of Environmental Protection of the Republic of Serbia (No. 401-00-1219/2018-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Stanišić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanišić, S. et al. (2021). What Information on Volatile Organic Compounds Can Be Obtained from the Data of a Single Measurement Site Through the Use of Artificial Intelligence?. In: Pap, E. (eds) Artificial Intelligence: Theory and Applications. Studies in Computational Intelligence, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-030-72711-6_12

Download citation

Publish with us

Policies and ethics