Skip to main content

Diagnosis and Classification of AML: WHO 2016

  • Chapter
  • First Online:
Acute Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by intrinsic genetic complexity, present at diagnosis and/or evolving during the disease course. Due to the significant prognostic role of genetic changes in AML, characterization of molecular and phenotypic profiles is essential to designing patient- and disease-specific strategies aimed at preventing disease relapse and improving long-term outcome. In recent years, deep biological knowledge emerging in myeloid neoplasms led to the revised edition of the World Health Organization (WHO) classification in 2016. Accordingly, the rules for AML classification require collection of the patient’s history, including previous cytotoxic therapies, which define “therapy-related myeloid neoplasms,” or a prior history of MDS or MPN, defining “AML with myelodysplasia-related changes” (“AML-MRC”). The second field of investigation for classifying a case of AML is the presence of specific gene mutations or rearrangements defining the category of “AML with recurrent genetic abnormalities”. The detection of balanced or unbalanced cytogenetics aberrations considered associated with MDS and/or detection of multilineage dysplasia by morphology, defines the disease as “AML-MRC.” When the disease cannot be classified in another category, the morphologic exam of bone marrow and peripheral blood is the only parameter useful in the subcategorization of “AML, not otherwise specified" ("AML-NOS"). 

Recently, high-throughput next-generation techniques have indeed showed the accumulation of multiple genetic abnormalities in leukemic blasts. Not only do somatic mutations affect disease pathogenesis as single events, but also their combination plays a significant role. In this line, the European Leukemia Net (ELN) defined the first genetic-based stratification system for AML in 2010, and published a revised version in 2017. Three prognostic subgroups have been identified (favorable, intermediate, and adverse), where in addition to karyotype assessment, NPM1 mutation and evaluation of FLT3-ITD allelic burden, together with assessment of TP53, RUNX1, and ASXL1 mutations, are mandatory for proper AML stratification. In this chapter, we will also review the integrated diagnostic algorithm for AML diagnosis, nowadays an important challenge in the context of precision medicine, mandatory for the design of targeted-treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S et al (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116:2122–2126

    Article  CAS  PubMed  Google Scholar 

  • Alfonso V et al (2019) Early and sensitive detection of PML-A216V mutation by droplet digital PCR in ATO-resistant acute promyelocytic leukemia. Leukemia 33(6):1527–1530. https://doi.org/10.1038/s41375-018-0298-3

    Article  CAS  PubMed  Google Scholar 

  • Al-Harbi S et al (2020) An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 4:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almond LM et al (2017) Myeloid sarcoma: presentation, diagnosis, and treatment. Clin Lymphoma Myeloma Leuk 17:263–267

    Article  PubMed  Google Scholar 

  • Angelini DF et al (2015) A leukemia-associated CD34/CD123/CD25/CD99+immunophenotype identifies FLT3-mutated clones in acute myeloid leukemia. Clin Cancer Res 21:3977–3985

    Article  CAS  PubMed  Google Scholar 

  • Angenendt L et al (2019) Chromosomal abnormalities and prognosis in NPM1-mutated acute myeloid leukemia: a pooled analysis of individual patient data from nine international cohorts. J Clin Oncol 37:2632–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber DA (2019) The 2016 WHO classification of acute myeloid leukemia: what the practicing clinician needs to know. Semin Hematol 56:90–95

    Article  PubMed  Google Scholar 

  • Arber DA et al (2016) The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Baer MR et al (1997) Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 90:1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Bain BJ, Bene MC (2019) Morphological and immunophenotypic clues to the WHO categories of acute myeloid leukaemia. Acta Haematol 141:232–244

    Article  CAS  PubMed  Google Scholar 

  • Bennett J et al (1976) Proposals for the classification of the acute Leukaemias. Br J Haematol 33:451–458

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar N et al (2016) Transient abnormal myelopoiesis and AML in Down syndrome: an update. Curr Hematol Malig Rep 11:333–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Borowitz MJ et al (1993) Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 100:534–540

    Article  CAS  PubMed  Google Scholar 

  • Borrow J et al (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580

    Article  CAS  PubMed  Google Scholar 

  • Breccia M et al (2013) FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica 98:e161–e163

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunetti C et al (2017) Droplet digital PCR is a reliable tool for monitoring minimal residual disease in acute promyelocytic leukemia. J Mol Diagn 19:437–444

    Article  CAS  PubMed  Google Scholar 

  • Buccisano F et al (2010) Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood 116(13):2295–2303

    Article  CAS  PubMed  Google Scholar 

  • Buccisano F et al (2018a) Role of minimal (measurable) residual disease assessment in older patients with acute myeloid leukemia. Cancers (Basel) 10

    Google Scholar 

  • Buccisano F et al (2018b) Minimal residual disease as a biomarker for outcome prediction and therapy optimization in acute myeloid leukemia. Expert Rev Hematol 11:307–313

    Article  CAS  PubMed  Google Scholar 

  • Cairoli R et al (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107:3463–3468

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Olson MO (1990) Structure of the gene for rat nucleolar protein B23. J Biol Chem 265:18227–18233

    Article  CAS  PubMed  Google Scholar 

  • Chen G et al (2020) Loss of X chromosome predicts favorable prognosis in female patients with t(8;21) acute myeloid leukemia. Leuk Lymphoma 61(5):1168–1177. https://doi.org/10.1080/10428194.2019.1709836

    Article  CAS  PubMed  Google Scholar 

  • Christen F et al (2019) Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. Blood 133:1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Cicconi L, Lo-Coco F (2016) Current management of newly diagnosed acute promyelocytic leukemia. Ann Oncol 27:1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Cicconi L et al (2016) PML-RAR? Kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia 30:1987–1992

    Article  CAS  PubMed  Google Scholar 

  • Coltoff A et al (2018) Role of minimal residual disease in the management of acute myeloid leukemia-a case-based discussion. Ann Hematol 97:1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Corbacioglu A et al (2010) Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol 28:3724–3729

    Article  CAS  PubMed  Google Scholar 

  • Cuneo A et al (1996) Philadelphia chromosome-positive acute myeloid leukemia: cytoimmunologic and cytogenetic features. Haematologica 81:423–427

    CAS  PubMed  Google Scholar 

  • Del Principe MI et al (2019) Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn 19:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Devillier R et al (2015) Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia-related changes. Oncotarget 6:8388–8396

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicker F et al (2010) Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24:1528–1532

    Article  CAS  PubMed  Google Scholar 

  • Dimov ND et al (2010) Rapid and reliable confirmation of acute promyelocytic leukemia by immunofluorescence staining with an antipromyelocytic leukemia antibody: The M. D. Anderson cancer center experience of 349 patients. Cancer 116:369–376

    Article  CAS  PubMed  Google Scholar 

  • Ding L et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohner K et al (2005) Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106:3740–3746

    Article  PubMed  CAS  Google Scholar 

  • Döhner H et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474

    Article  PubMed  CAS  Google Scholar 

  • Dohner H et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duployez N et al (2016) Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127:2451–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eirín-López JM et al (2006) Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics 173:1835–1850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falini B et al (1997) Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood 90:4046–4053

    Article  CAS  PubMed  Google Scholar 

  • Falini B et al (2009) Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 23:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Falini B et al (2010) Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood 115:3776–3786

    Article  CAS  PubMed  Google Scholar 

  • Fasan A et al (2014) The role of different genetic subtypes of CEBPA mutated AML. Leukemia 28:794–803

    Article  CAS  PubMed  Google Scholar 

  • Frohling S et al (2004) CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22:624–633

    Article  PubMed  CAS  Google Scholar 

  • Gabert J et al (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe against cancer program. Leukemia 17:2318–2357

    Article  CAS  PubMed  Google Scholar 

  • Gaidzik VI et al (2011) RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 29:1364–1372

    Article  PubMed  Google Scholar 

  • Gaidzik VI et al (2012) TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol 30:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Gale RE et al (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111:2776–2784

    Article  CAS  PubMed  Google Scholar 

  • Garnache-Ottou F et al (2019) How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients? Blood Adv 3:4238–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gary Gilliland D, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542

    Article  PubMed  CAS  Google Scholar 

  • Genovese G et al (2014) Clonal hematopoiesis and blood-Cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong X et al (2019) Unusual findings of acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2): a multicenter study. Int J Lab Hematol 41:380–386

    Article  PubMed  Google Scholar 

  • Gorello P et al (2006) Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 20:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Goyama S, Mulloy JC (2011) Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol 94:126–133

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D (2001) The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol 14:497–529

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D et al (2009) Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 27:3650–3658

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D et al (2016) Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 127:29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisendi S et al (2006) Nucleophosmin and cancer. Nat Rev Cancer 6:493–505

    Article  CAS  PubMed  Google Scholar 

  • Grossmann V et al (2013) Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia 27:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Heuser M et al (2019) How precision medicine is changing acute myeloid leukemia therapy. Am Soc Clin Oncol Educ book 39:411–420

    Article  PubMed  Google Scholar 

  • Ichikawa M et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304

    Article  CAS  PubMed  Google Scholar 

  • Inaba H et al (2015) Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 126:1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivey A et al (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374:422–433

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jongen-Lavrencic M et al (2018) Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N Engl J Med 378:1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Jourdan E et al (2013) Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 121:2213–2223

    Article  CAS  PubMed  Google Scholar 

  • Kang Z-J et al (2016) The Philadelphia chromosome in leukemogenesis. Chin J Cancer 35:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kayser S et al (2011) The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 117:2137–2145

    Article  CAS  PubMed  Google Scholar 

  • Kayser S et al (2017) Characteristics and outcome of patients with therapy-related acute promyelocytic leukemia front-line treated with or without arsenic trioxide. Leukemia 31:2347–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser S et al (2020) Allogeneic hematopoietic cell transplantation improves outcome of adults with t(6;9) acute myeloid leukemia: results from an international collaborative study. Haematologica 105:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M et al (2018) An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL). Ann Hematol 97:945–953

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H et al (2002) Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 21:2555–2563

    Article  CAS  PubMed  Google Scholar 

  • Kohlmann A et al (2013) Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia 28:129

    Article  PubMed  CAS  Google Scholar 

  • Konoplev S et al (2013) Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma 54:138–144

    Article  CAS  PubMed  Google Scholar 

  • Koschmieder S et al (2009) Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 27:619–628

    Article  CAS  PubMed  Google Scholar 

  • Krönke J et al (2013) Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 122:100–108

    Article  PubMed  CAS  Google Scholar 

  • Kuo Y-H et al (2006) Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9:57–68

    Article  CAS  PubMed  Google Scholar 

  • Labuhn M et al (2019) Mechanisms of progression of myeloid preleukemia to transformed myeloid leukemia in children with Down syndrome. Cancer Cell 36:123–138.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Largeaud L et al (2019) Outcome of AML patients with IDH2 mutations in real world before the era of IDH2 inhibitors. Leuk Res 81:82–87

    Article  CAS  PubMed  Google Scholar 

  • Leroy B et al (2013) The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res 41:D962–D969

    Article  CAS  PubMed  Google Scholar 

  • Ley TJ et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L-I et al (2006) A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia 20:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Magdy M et al (2019) Myeloid sarcoma. Oncol Res Treat 42:224–229

    Article  PubMed  CAS  Google Scholar 

  • Mannelli F et al (2017) CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features. Haematologica 102:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci G et al (2005) Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a cancer and leukemia group B study. J Clin Oncol 23:5705–5717

    Article  PubMed  Google Scholar 

  • Mason EF, Hasserjian RP, Aggarwal N, Seegmiller AC, Pozdnyakova O (2019) Blast phenotype and comutations in acute myeloid leukemia with mutated NPM1 influence disease biology and outcome. Blood Adv 3:3322–3332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matutes E et al (2011) Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 117:3163–3171

    Article  CAS  PubMed  Google Scholar 

  • Maurillo L et al (2008) Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 26:4944–4951

    Article  PubMed  Google Scholar 

  • McNerney ME et al (2017) Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer 17:513–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mencia-Trinchant N et al (2017) Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J Mol Diagn 19:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrozek K et al (1997) Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood 90:4532–4538

    Article  CAS  PubMed  Google Scholar 

  • Mrozek K et al (2004) Cytogenetics in acute leukemia. Blood Rev 18:115–136

    Article  PubMed  Google Scholar 

  • Nacheva EP et al (2013) Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol 161:541–550

    Article  CAS  PubMed  Google Scholar 

  • Neuendorff NR et al (2016) BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features. Ann Hematol 95:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MR et al (2013) Acute myeloid leukemia, version 2.2013. J Natl Compr Canc Netw 11:1047–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Ossenkoppele G, Schuurhuis GJ (2016) MRD in AML: does it already guide therapy decision-making? Hematology Am Soc Hematol Educ Program 2016:356–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottone T et al (2013) Identification of emerging FLT3 ITD-positive clones during clinical remission and kinetics of disease relapse in acute myeloid leukaemia with mutated nucleophosmin. Br J Haematol 161:533–540

    Article  CAS  PubMed  Google Scholar 

  • Pagano L et al (2013) Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica 98:239–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandolfi PP et al (1992) Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J 11:1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaemmanuil E et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2209–2221

    Google Scholar 

  • Papaemmanuil E et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374:2209–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschka P et al (2013) Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML study group (AMLSG). Blood 121:170–177

    Article  CAS  PubMed  Google Scholar 

  • Perl AE (2019) Availability of FLT3 inhibitors: how do we use them? Blood 134:741–745

    Article  CAS  PubMed  Google Scholar 

  • Piaton E, et al (2015) [Technical recommendations and best practice guidelines for May-Grunwald-Giemsa staining: literature review and insights from the quality assurance]. Ann Pathol 35:294–305

    Google Scholar 

  • Picharski GL et al (2019) The impact of Flt3 gene mutations in acute promyelocytic leukemia: a meta-analysis. Cancers (Basel) 11:1311

    Article  CAS  Google Scholar 

  • Porwit A et al (2014) Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the International/European LeukemiaNet Working Group for flow cytometry in MDS. Leukemia 28:1793–1798

    Article  CAS  PubMed  Google Scholar 

  • Pratcorona M et al (2012) Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 97:388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Press RD et al (2019) Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse. Am J Hematol 94:902–912

    Article  CAS  PubMed  Google Scholar 

  • Rahman K et al (2018) The triple-negative (CD34-/HLA-DR-/CD11b-) profile rapidly and specifically identifies an acute promyelocytic leukemia. Int J Lab Hematol 40:144–151

    Article  CAS  PubMed  Google Scholar 

  • Ravandi F (2018) Is it time to routinely incorporate MRD into practice? Best Pract Res Clin Haematol 31:396–400

    Article  PubMed  Google Scholar 

  • Ravandi F et al (2018) Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv 2:1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosnet O et al (1991) Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics 9:380–385

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD, Olney HJ (2002) International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 33:331–345

    Article  PubMed  Google Scholar 

  • Rozman M et al (2014) Multilineage dysplasia is associated with a poorer prognosis in patients with de novo acute myeloid leukemia with intermediate-risk cytogenetics and wild-type NPM1. Ann Hematol 93:1695–1703

    Article  PubMed  Google Scholar 

  • Sanz MA et al (2000) Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 96:1247–1253

    CAS  PubMed  Google Scholar 

  • Sanz MA et al (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891

    Article  CAS  PubMed  Google Scholar 

  • Sanz MA et al (2019) Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood 133:1630–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenk RF (2016) Is there justification for 4 cycles of consolidation therapy in AML? Best Pract Res Clin Haematol 29:341–344

    Article  PubMed  Google Scholar 

  • Schmidt-Zachmann MS et al (1987) A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J 6:1881–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnittger S et al (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Schuurhuis GJ et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD working party. Blood 131:1275–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Side LE et al (2004) RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 39:217–223

    Article  CAS  PubMed  Google Scholar 

  • Soupir CP et al (2007) Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 127:642–650

    Article  PubMed  Google Scholar 

  • Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665

    Article  CAS  PubMed  Google Scholar 

  • Stirewalt DL et al (2001) FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97:3589–3595

    Article  CAS  PubMed  Google Scholar 

  • Stone RM et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377:454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutamtewagul G, Vigil CE (2018) Clinical use of FLT3 inhibitors in acute myeloid leukemia. Onco Targets Ther 11:7041–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow SH et al (2017) WHO classification of tumors of hematopoietic and lymphoid tissues. IARC

    Google Scholar 

  • Thiede C et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  CAS  PubMed  Google Scholar 

  • Thol F et al (2012) Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer 51:689–695

    Article  CAS  PubMed  Google Scholar 

  • Van Dongen JJ et al (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia 13:1901–1928

    Article  PubMed  CAS  Google Scholar 

  • Vardiman J, Reichard K (2015) Acute myeloid leukemia with myelodysplasia-related changes. Am J Clin Pathol 144:29–43

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW et al (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  CAS  PubMed  Google Scholar 

  • Venditti A et al (2019) GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 134:935–945

    Article  CAS  PubMed  Google Scholar 

  • Walter RB et al (2013) Significance of FAB subclassification of ‘acute myeloid leukemia, NOS’ in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. Blood 121:2424–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisser M et al (2007) Advanced age and high initial WBC influence the outcome of inv(3) (q21q26)/t(3;3) (q21;q26) positive AML. Leuk Lymphoma 48:2145–2151

    Article  CAS  PubMed  Google Scholar 

  • Willekens C et al (2016) Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica 101:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin JAL et al (2012) Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120:2826–2835

    Article  CAS  PubMed  Google Scholar 

  • Yokota A et al (2020) The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells 43(2):145–152

    Google Scholar 

  • Zeijlemaker W et al (2014) Tumor heterogeneity makes AML a ‘moving target’ for detection of residual disease. Cytometry B Clin Cytom 86:3–14

    Article  CAS  PubMed  Google Scholar 

  • Zhou W et al (2020) Loss of the Y chromosome predicts a high relapse risk in younger adult male patients with t(8;21) acute myeloid leukemia on high-dose cytarabine consolidation therapy: a retrospective multicenter study. Leuk Lymphoma 61(4):820–830. https://doi.org/10.1080/10428194.2019.1683734

    Article  CAS  PubMed  Google Scholar 

  • Zhu H-H et al (2014) Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med 370:1864–1866

    Article  CAS  PubMed  Google Scholar 

  • Zink F et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Voso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voso, M.T., De Bellis, E., Ottone, T. (2021). Diagnosis and Classification of AML: WHO 2016. In: Röllig, C., Ossenkoppele, G.J. (eds) Acute Myeloid Leukemia . Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-72676-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72676-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72675-1

  • Online ISBN: 978-3-030-72676-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics