Skip to main content

Calculation of Reinforced Concrete Elements Taking into Account Nonlinear Creep at Different Loading Mode

  • Conference paper
  • First Online:
Proceedings of EECE 2020 (EECE 2020)

Abstract

The article is devoted to the study of one of the main properties of concrete - nonlinear creep. Methods for determining the effect of nonlinear creep on the stress-strain state of reinforced concrete structures operating without cracks in a tensile zone are relatively well developed. To a lesser extent, the methods of nonlinear creep calculation for cracked structures have been studied, especially when taking into account the gradual application of the load over time and the redistribution of stresses along the height of the compressed zone of sections. To solve this problem, the article discusses the features of the application of the step version of the method of elastic solutions for reinforced concrete bar structures with reinforcement in the compressed and stretched zones of the section under bending or eccentric compression. The purpose of the article is to determine the stress-strain state of reinforced concrete beam caused by nonlinear creep under instantaneous and step loads, compare it with the experiments of other scientists, and analyze the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arutyunyan, N.Kh., Aleksandrovskiy, S.V.: Sovremennoe sostoyanie razvitiya teorii polzuchesti betona [State-of-the-art of the Concrete Creep Theory]. In: Polzuchest’ i usadka be-tona i zhelezobetonnykh konstruktsiy: sostoyanie problemy i perspektivy razvitiya [Creep and Shrinkage of Concrete and of Reinforced Concrete Structures: the Problem State and Development Prospects], pp. 5–96. Stroyizdat Publ., Moscow (1976). (in Russian)

    Google Scholar 

  2. Hatt, W.K.: Notes on the effect of time element in loading reinforced concrete beam. Proc. Amer. Soc. Test. Mater. 7 (1907)

    Google Scholar 

  3. Considere, A.A.: Method of concrete reinforcement to withstand considerable tension. Compt. Rendus 140 (1905). Ian Le Genie Civil, vol. 46 (1905)

    Google Scholar 

  4. Norton, F.H.: Creep of Steel at High Temperatures. McGraw-Hill, New York (1929)

    Google Scholar 

  5. Bailey, R.W.: Creep of steel under simple and compound stresses and the use of high initial temperature in steam power plant. In: Transactions of the World Power Conference, vol. 3, p. 1089 (1929)

    Google Scholar 

  6. Bailey, R.W.: The utilization of creep test data in engineering design. In: The Institution of Mechanical Engineers. Proceeding, vol. 131, pp. 131–269 (1935)

    Google Scholar 

  7. Malinin, N.N.: Bases of Calculations for Creep. Mashgiz, Moscow (1948)

    Google Scholar 

  8. Hult, J.A.H.: Creep in Engineering Structures. Blaisdell Publishing Company, Toronto, London, Waltham (1966)

    Google Scholar 

  9. Marin, J.: Mechanical Behavior of Engineering Materials. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  10. Weber, W.: Ueber die Elastitaet der Seidenfaeden. Annalen der Physik und Chemie: Zweite serie 34, 247–257 (1835)

    Article  Google Scholar 

  11. Finnie, I.: Creep of Engineering Materials. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  12. Penny, R.K.: Design for Creep. McGraw Hill, London (1971)

    Google Scholar 

  13. Stolyarov, Ya.V.: On the influence of time on the work of reinforced concrete. Moscow (1931)

    Google Scholar 

  14. Nylander, Y.A.: Study of strain and temperature in the body dams of the Dnieper. Gosstroiizdat, Moscow (1933)

    Google Scholar 

  15. Borishansky, M.S.: Investigation of the work of out-of-center compressed reinforced concrete elements. Project and standard, vol. 6 (1936)

    Google Scholar 

  16. Aleksandrovsky, S.V., Bondarenko, V.M., Prokopovich, E.I.: Application of the theory of creep to practical calculations of reinforced concrete structures, pp. 256–301. Stroyizdat, Moscow (1976)

    Google Scholar 

  17. Gvozdev, A.A.: Creep of concrete and ways of its research, pp. 126–137. Gosstroiizdat, Moscow (1955)

    Google Scholar 

  18. Ulitskiy, I.I.: Creep of concrete. Gostekhizdat of the Ukrainian SSR, Kiev (1948)

    Google Scholar 

  19. Vasiliev, P.I.: Relationship between stresses and deformations in concrete under compression with consideration of time influence. Izvestiya VNIIG, vol. 45 (1951)

    Google Scholar 

  20. Zaitsev, Y.: Modeling of concrete deformations and strength by methods of fracture mechanics, 2nd edn. Publishing House of the Moscow State Open University, Moscow (1995)

    Google Scholar 

  21. Boltzman, L.: Sur Theorie der elastisten Nachwirkung. Ann. Physik und Chemie, Erg. Bd. 7 (1876)

    Google Scholar 

  22. Volterra, V.: Lecons sur les fonctions de lignes. Cauthier-Villard, Paris (1913)

    MATH  Google Scholar 

  23. Dischinger, F.: Elastische und plastische Verformungen der Eisenbetontragwerke und insbesondere der Bogenbricken. Bauingenieur 47/48 (1939)

    Google Scholar 

  24. Dischinger, F.: Undersuchungen uber die Knicksicherheit, die elastische Verformung und des Kriechen des Betos bei Bogenbruken. Bauingenieur 33/40 (1937)

    Google Scholar 

  25. Whitney, C.: Plain and reinforced concrete arches. J. Am. Cobcr. Inst. 28, 479 (1932)

    Google Scholar 

  26. Maslov, G.N.: Thermal stress state in concrete masses with account of concrete creep. VNIIG 28, 175–178 (1940)

    Google Scholar 

  27. Arutyunyan, N.H.: Some questions of the theory of creep. GOST-hizdat, Moscow (1952)

    Google Scholar 

  28. Arutyunyan, N.H.: Stresses and deformations in concrete massifs taking into account the creep of concrete. DAN Arm. USSR 7(5) (1947)

    Google Scholar 

  29. Manukyan, K.M., Sapunov, V.T.: Modification of the method of initial deformations for solving creep problems. In the collection: strength and durability of materials and structures of nuclear technology. Energoatomizdat, Moscow, pp. 89–94 (1982)

    Google Scholar 

  30. Prokopovich, I.E.: Fundamentals of applied linear creep theory. Higher School, Moscow (1978)

    Google Scholar 

  31. Bondarenko, V.M., Bondarenko, S.V.: Engineering methods of the nonlinear theory of reinforced concrete. Stroizdat, Moscow (1982)

    Google Scholar 

  32. Sanzharovsky, R.S.: On the theory of calculation for nonlinear creep taking into account long-term strength II Research on the calculation of building structures. Leningrad, pp. 35–42 (1977)

    Google Scholar 

  33. Krylov, S.B.: The equation of the transverse and longitudinal bending of a reinforced concrete rod taking into account the concrete creep. Concrete and reinforced concrete, vol. 6 (2003)

    Google Scholar 

  34. Krylov, S.B.: Calculation of reinforced concrete beams on the basis of the theory of an elastic creep body. Concrete and reinforced concrete, vol. 5, pp. 23–25 (2003)

    Google Scholar 

  35. Krylov, S.B., Arleninov, P.D.: Modern research in the field of concrete creep theory. Bull. SIC Build. 1(16), 67–75 (2018)

    Google Scholar 

  36. Gusakov, V.N.: Calculation of reinforced structures made of heavy silicate concrete. Stroyizdat, Moscow (1967)

    Google Scholar 

  37. Vasiliev, P.I., Strakhov, D.A.: Design of reinforced concrete bar structures with regard to creep. Concrete and reinforced concrete, vol. 1 (1975)

    Google Scholar 

  38. Lebesgue, H.: Lessons on integrating and finding primitive functions. Gauthier-Villars, Paris (1904)

    MATH  Google Scholar 

  39. Vishnevetsky, G.D., Ignatenko, T.K.: Focal ordinates for relaxation processes and their use in the calculation of bent reinforced concrete elements taking into account the nonlinear-hereditary creep of concrete. Interuniversity thematic collection of works No. 1. LISI, Leningrad (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vorobeva, A., Strakhov, D., Semenov, K. (2021). Calculation of Reinforced Concrete Elements Taking into Account Nonlinear Creep at Different Loading Mode. In: Vatin, N., Borodinecs, A., Teltayev, B. (eds) Proceedings of EECE 2020. EECE 2020. Lecture Notes in Civil Engineering, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-72404-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72404-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72403-0

  • Online ISBN: 978-3-030-72404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics