Skip to main content

Preliminary Express Assessment of Dispersive Soil Foundations Using MASW

  • Conference paper
  • First Online:
Proceedings of EECE 2020 (EECE 2020)

Abstract

Modern nondestructive techniques of wave analysis can be applied for the preliminary geotechnical soil express assessment. The paper provides two practical step-by-step guidelines for an express assessment of the deformation modulus E and a model deformation curve of dispersive soils plotting based on the in-situ Multichannel Analysis of Surface Waves (MASW) testing. They were formulated based on the previous experimental, analytical and numerical studies, such as in-situ plate load tests (PLT) and MASW, laboratory triaxial tests, analytical studies and numerical PLT. The guidelines are applicable for normally compacted non-cohesive (sand) and cohesive mineral dispersive soils of any moisture content and undisturbed structure with a unit weight of 16.0–20.8 kN/m3, which are located in the Urals and Western Siberia at the depth of up to 6.5 m. For the deformation modulus estimation during preliminary geotechnical calculations, MASW allows labor intensity reduction up to 3 times and cost - up to 8 times as compared to conventional tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, C., Miller, R., Xia, J.: Multichannel analysis of surface waves. Geophysics 64(3), 800–808 (1999). https://doi.org/10.1190/1.1444590

    Article  Google Scholar 

  2. Ryden, N., Park, C.: Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics 71(4), 49–58 (2006). https://doi.org/10.1190/1.2204964

    Article  Google Scholar 

  3. Park, C., Miller, R.: Roadside passive multichannel analysis of surface waves (MASW). J. Environ. Eng. Geophys. 1(13), 1–11 (2008). https://doi.org/10.2113/JEEG13.1.1

    Article  Google Scholar 

  4. Park, C., Carnevale, M.: Optimum MASW survey – revisit after a decade of use. In: GeoFlorida, pp. 1303–1312 (2010). https://doi.org/10.1061/41095(365)130

  5. Park, C.: Imaging dispersion of MASW data—full vs. selective offset scheme. J. Environ. Eng. Geophys. 16(1), 13–23 (2011). https://doi.org/10.2113/JEEG16.1.13

    Article  Google Scholar 

  6. Louie, J.: Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull. Seismol. Soc. Am. 91(2), 347–364 (2001). https://doi.org/10.1785/0120000098

    Article  Google Scholar 

  7. Foti, S.: Multistation methods for geotechnical characterization using surface waves. PhD thesis, Politechnico di Torino, Italy (2000). https://doi.org/10.6092/polito/porto/2497212

  8. Foti, S., Lai, C., Rix, G., Strobbia, C.: Surface Wave Methods for Near-Surface Site Characterization. CRC Press, London (2015)

    Google Scholar 

  9. Suto, K.: Multichannel analysis of surface waves (MASW) for investigation of ground competence: an Introduction. In: Engineering Advances in Earthworks, pp. 71–81. Australian Geomechanics Society (2007)

    Google Scholar 

  10. Mayne, P.: Stress-strain-strength-flow parameters from seismic cone tests. In: Proceedings of International Conference on In-Situ Measurement of Soil Properties and Case Histories. Bali, pp. 27–48 (2001)

    Google Scholar 

  11. McGrath, T., Long, M., O’Connor, P., Trafford, A., Ward, D.: Multichannel analysis of surface waves (MASW) for offshore geotechnical investigations. In: Proceedings of the Fifth International Conference on Geotechnical and Geophysical Site Characterization, ISSMGE TC-102 – ISC’5, pp. 911–916. Australian Geomechanics Society, Gold Coast (2016)

    Google Scholar 

  12. Pegah, E., Liu, H.: Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterization: a case study. Eng. Geol. 208, 100–113 (2016). https://doi.org/10.1016/j.enggeo.2016.04.021

    Article  Google Scholar 

  13. Madun, A., Ahmad Supa’at, M., Ahmad Tajudin, S., Zainalabidin, M., Sani, S., Yusof, M.: Soil investigation using multichannel analysis of surface wave (MASW) and borehole. ARPN J. Eng. Appl. Sci. 11(6), 3759–3763 (2016)

    Google Scholar 

  14. Schofield, N., Burke, R.: CPT, DMT and MASW allowing economic design of a large residential project over soft soils. In: Proceedings of the Fifth International Conference on Geotechnical and Geophysical Site Characterization, ISSMGE TC-102 – ISC’5, pp. 1039–1044. Australian Geomechanics Society, Gold Coast (2016)

    Google Scholar 

  15. Lu, Z., Wilson, G.: Imaging a soil fragipan using a high-frequency multichannel analysis of surface wave method. J. Appl. Geophys. 143, 1–8 (2017). https://doi.org/10.1016/j.jappgeo.2017.05.011

    Article  Google Scholar 

  16. Sastry, R., Chahar, S.: Geoelectric versus MASW for geotechnical studies. J. Earth Syst. Sci. 128, 13 (2019). https://doi.org/10.1007/s12040-018-1061-x

    Article  Google Scholar 

  17. Baglari, D., Dey, A., Taipodia, J.: A state-of-the-art review of passive MASW survey for subsurface profiling. Innov. Infrastruct. Solut. 3, 1–13 (2018). https://doi.org/10.1007/s41062-018-0171-2

    Article  Google Scholar 

  18. Mi, B., Xia, J., Shen, C., Wang, L., Hu, Y., Cheng, F.: Horizontal resolution of multichannel analysis of surface waves. Geophysics 82(3), EN51–EN66 (2017). https://doi.org/10.1190/geo2016-0202.1

    Article  Google Scholar 

  19. Li, C., Ashlock, J., Lin, S., Vennapusa, P.: In situ modulus reduction characteristics of stabilized pavement foundations by multichannel analysis of surface waves and falling weight deflectometer tests. Constr. Build. Mater. 188, 809–819 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.163

    Article  Google Scholar 

  20. Taipodia, J., Dey, A.: Impact of strike energy on the resolution of dispersion image in active MASW survey. In: Proceedings of GeoShanghai 2018 International Conference: Multi-physics Processes in Soil Mechanics and Advances in Geotechnical Testing, GSIC 2018. pp. 419–427. Springer (2018). https://doi.org/10.1007/978-981-13-0095-0_47

  21. Antipov, V., Ofrikhter, V., Shutova, O.: Investigation of the soil stratification upper section by rapid methods of wave analysis. Vestn. MGSU 12, 44–60 (2016). (In Russian). https://doi.org/10.22227/1997-0935.2016.12.44-60

  22. Antipov, V., Ofrikhter, V.: Development of nondestructive techniques of preliminary soil foundations geotechnical assessment. Vestn. MGSU 12(123), 1448–1473 (2018). (In Russian). https://doi.org/10.22227/1997-0935.2018.12.1448-1473

  23. Antipov, V., Ofrikhter, V.: Correlation between wave analysis data and data of plate load tests in various soils. In: Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations – Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Tech., pp. 16–20. Taylor & Francis Group, London (2019)

    Google Scholar 

  24. Antipov, V., Ofrikhter, V.: Field estimation of deformation modulus of the soils by multichannel analysis of surface waves. Data Br. 24, 5 (2019). https://doi.org/10.1016/j.dib.2019.103974

    Article  Google Scholar 

  25. Antipov, V., Ofrikhter, V.: Express assessment of soil strata and of soil unit weight by wave analysis. Bull. PNRPU. Constr. Archit. 1(10), 38–48 (2019). (In Russian). https://doi.org/10.15593/2224-9826/2019.1.04

  26. Antipov, V., Ofrikhter, V., Likchacheva, N.: Express plotting of expected deformation curve based on wave analysis data. Bull. Civ. Eng. 3(80), 101–107 (2020). (In Russian). https://doi.org/10.23968/1999-5571-2020-17-3-101-107

  27. Antipov, V., Ofrikhter, V.: Transition factor between elastic and deformation moduli for dispersive soils. Mag. Civ. Eng. 7(99), 10 (2020). (Accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antipov, V., Ofrikhter, V. (2021). Preliminary Express Assessment of Dispersive Soil Foundations Using MASW. In: Vatin, N., Borodinecs, A., Teltayev, B. (eds) Proceedings of EECE 2020. EECE 2020. Lecture Notes in Civil Engineering, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-72404-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72404-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72403-0

  • Online ISBN: 978-3-030-72404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics