Skip to main content

Perfluorosubstituted Derivatives of 1,3-Diazine and 1,2,4-Triazole as a Means of Protecting Industrial Structures from Microbiologically Induced Corrosion

  • Conference paper
  • First Online:
Proceedings of EECE 2020 (EECE 2020)

Abstract

The development of microorganisms on the surface of building materials, in pores or cracks, leads to the destruction or dissolution of this material. One of the most common and effective ways to protect building materials and structures from microbiologically influenced corrosion (MIC) is the use of biocidal drugs. The biocidal activity of a number of fluorinated derivatives of 1,3-diazines and 1,2,4-triazoles against Bacillus mucilaginosus cells has been studied. This bacterium is an active destroyer of silicates and aluminosilicates. The mineral-destroying role of this microorganism is associated with the synthesis of exopolysaccharides and acidic low-molecular-weight metabolites. It was found that in a series of 6-fluorinated of 2-amino- (I), 2-hydroxy- (II), 2-mercapto- (III) and 2-methylthio- (IV) pyrimidines, 2-methylthio- (IV) derivatives have the greatest biocidal effect, the suppression zones vary from 25 mm to 35.5 mm at the studied concentrations (0.6, 6 and 60% (vol.)). Samples of fluorinated of 5-mercapto-1,2,4-triazoles (V) also showed a good protective effect: the zone of growth inhibition of Bacillus mucilaginosus are in the interval from 20.5 mm to 27.5 mm. The greatest biocidal effect is inherent in perfluoroalkyl substituents of the following structure: C6F13 (a), CF(CF3)OC3F7 (c); CF(CF3)OCF2CF(CF3)OC3F7 (d); CF(CF3)[OCF2CF(CF3)]2OC3F7 (e). Their use as a protective coating, especially concrete, will ensure a longer safe operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svetlov, D.A., Kachalov, A.N., Russ, J.: Microbiological corrosion of building materials. Russ. J. Transp. Eng. 4(6) (2019). https://doi.org/10.15862/19sats419

  2. Junier, P., Joseph, E.: Microb. Biotech. 10, 5 (2017)

    Article  Google Scholar 

  3. Konovalov, M., Kozinets, G.: Prospects for the multi-storey buildings construction using wooden structures. IOP Conf. Ser. Mater. Sci. Eng. 698(2), 022062 (2019). https://doi.org/10.1088/1757-899X/698/2/022062

    Article  Google Scholar 

  4. Begue, J.-P., Bonnet-Delpon, D.: Bioorganic and Medicinal Chemistry of Fluorine. Wiley, Hoboken New Jersey (2008)

    Book  Google Scholar 

  5. Furin, G.G.: Fluorinated Heterocyclic Compounds: Synthesis and Application. Nauka, Novosibirsk (2001)

    Google Scholar 

  6. Fujiwara, T., O’Hagan, D.: Successful fluorine-containing herbicide agrochemicals. Fluor. Chem. 167, 16–29 (2014)

    Article  Google Scholar 

  7. Grunebaum, M., Gerlitz, A.I., Buchheir, A.J., et al.: Improved synthesis of perfluoroalkyl substituted 1,3,4-oxadiazoles as precursors for corresponding 1,2,4-triazoles. Fluor. Chem. 183, 30–35 (2016)

    Article  Google Scholar 

  8. Kissa, E.: Fluorinated Sufractants and Repellents, 2nd edn. Marcel Decker, New York (2001)

    Google Scholar 

  9. Chambers, R.D.: Fluorine in Organic Chemistry. Blackwell Public Ltd., Oxford (2004)

    Book  Google Scholar 

  10. Krafft, M.P., Riess, J.G.: Chemistry, physical chemistry, and uses of molecular fluorocarbon − hydrocarbon diblocks, triblocks, and related compounds—unique “Apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 109(5), 1714–1792 (2009)

    Article  Google Scholar 

  11. Michaylov, D.U., Budnikova, U.G.: Ftoralkilirovanie organicheskih soedinenij. Russ. Chem. Rev. 82(9), 835–864 (2013)

    Article  Google Scholar 

  12. Popova, L.M., Ginak, A.I.: Cyclocondensation of unsymmetrical perfluoroalkyl-substituted β-diketones with urea, thiourea, and guanidine. Russ. J. Org. Chem. 44(4), 489–494 (2008)

    Article  Google Scholar 

  13. Popova, L.M., Trishina, A.U., Vershilov, S.V., Ginak, A.I., Maksimov, B.N.: Synthesis and characterization of some new fluorinated pyrimidine derivatives. J. Fluor. Chem. 96(1), 51–56 (1999)

    Article  Google Scholar 

  14. Vershilov, S.V., Popova, L.M., Mungalov, V.E.: J. Appl. Chem. 67(7) (1994)

    Google Scholar 

  15. Qiu, J., Zhou, Y., Vatin, N.I.: Constr. Build. Mater. 264 (2020)

    Google Scholar 

  16. Rozental’, N.K.: Korroziya i zashhita betonnyx i zhelezobetonnyx konstrukcij sooruzhenij ochistki stochnyx vod. In: Beton i zhelezobeton. Oborudovanie. Materialy. Texnologii, pp. 78–85. Slavutich, St. Petersburg (2011)

    Google Scholar 

  17. Sand, W., Bock, E.: Biodeterioration of concrete by thiobacilli and nilriofyin bacteria. Mater. et Technol. 78, 70–72 (1990)

    Article  Google Scholar 

  18. Emerson, D.: The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34(9), 1–12 (2019)

    Google Scholar 

  19. Drake, H., Ivarsson, M., Bengtson, S., et al.: Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 8(1), 1–9 (2017)

    Article  Google Scholar 

  20. Liu, W., Xu, X., Wu, X.: Environ. Geochem. Health. 28, 1–2 (2006)

    Article  Google Scholar 

  21. Lv, Y., Li, J., Ye, H., Du, D., Gan, C., Wuri, L., Sun, P., Wen, J., Lv, Y., et al.: Bioprocess. Biosyst. Eng. 42(11), 1819–1828 (2019)

    Article  Google Scholar 

  22. Liu, W., Xu, X., Wu, X., Yang, Q., Luo, Y., Christie, P., Liu, W., et al.: Environ. Geochem. Health. 28(1–2) (2006)

    Google Scholar 

  23. Yu, L., Xu, S., Deng, C., Li, H., Yang, Q., Xu, Z., Chen, J.: Carbohydr. Polym. 1, 146 (2016)

    Google Scholar 

  24. Xu, H., Zhang, Z., Li, H., Yan, Y., Shi, J., Xu, Z., Xu, H., et al.: Prep. Biochem. Biotechnol. 49(5) (2019)

    Google Scholar 

  25. Malinovskaya, I.M., Kosenko, L.V., Votselko, S.K., Podgorsky, V.S.: The role of bacillus mucilaginosus polysaccharide in the destruction of silicate minerals. Mikrobiologiya 59(1), 70–78 (1990)

    Google Scholar 

  26. Wuxing, L.: Environ. Geochem. Health 28 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popova, L., Ivanchenko, O., Njanikova, G., Vershilov, S., Suchilova, V., Gaurav, B. (2021). Perfluorosubstituted Derivatives of 1,3-Diazine and 1,2,4-Triazole as a Means of Protecting Industrial Structures from Microbiologically Induced Corrosion. In: Vatin, N., Borodinecs, A., Teltayev, B. (eds) Proceedings of EECE 2020. EECE 2020. Lecture Notes in Civil Engineering, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-72404-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72404-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72403-0

  • Online ISBN: 978-3-030-72404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics