Skip to main content

Application of PCMs to Improve Energy Efficiency in Residential Buildings

  • Conference paper
  • First Online:
Proceedings of EECE 2020 (EECE 2020)

Abstract

The present investigation addresses the issue of thermal insulation of building walls. In particular, the case of a wall subjected to Mediterranean climatic conditions, typical for the city of Genoa (Italy), is taken into account. A comparison between a polyurethane and a PCM layer with a thickness of 4 cm is proposed. The analysis is developed numerically by implementing a finite elements model of the wall in Comsol Multiphysics. The wall is subjected to real climatic conditions extracted from historical meteorological data and the thermal demand for heating and cooling is estimated. Both the polyurethane and the PCM have positive performances. In particular, polyurethane is more effective in reducing the heating demand, whereas PCM has better performances in reducing the cooling demand. A brief introduction to the life cycle analysis is also provided with the estimation of the energy pay-back for the two insulators and the results highlight better performance for the PCM, even though the pay-back periods of the two are quite similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chwieduk, D.: Towards sustainable-energy buildings. Appl. Energy 76, 211–217 (2003)

    Article  Google Scholar 

  2. Bianco, V., Righi, D., Scarpa, F., Tagliafico, L.A.: Modeling energy consumption and efficiency measures in the Italian hotel sector. Energy Build. 149, 329–338 (2017)

    Article  Google Scholar 

  3. Pallonetto, F., De Rosa, M., D’Ettorre, F., Finn, D.P.: On the assessment and control optimisation of demand response program in residential buildings. Renew. Sustain. Energy Rev. 127, Article no. 109861 (2020)

    Google Scholar 

  4. De Rosa, M., Brennenstuhl, M., Cabrera, C.A., Eicker, U., Finn, D.: An iterative methodology for model complexity reduction in residential building simulation. Energies 12(12), Article no. 2448 (2019)

    Google Scholar 

  5. Jiang, Z., Cai, J., Moses, P.S.: Smoothing control of solar photovoltaic generation using building thermal loads. Appl. Energy 227, Article no. 115523 (2020)

    Google Scholar 

  6. Cao, V.D., Pilehvar, S., Salas-Bringas, C., Szczotok, A.M., Bui, T.Q., Carmona, M., Rodriguez, J.F., Kjøniksen, A.-L.: Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications. Solar Energy 178, 295–307 (2019)

    Google Scholar 

  7. Cristino, T.M., Lotufo, F.A., Delinchant, B., Wurtz, F., Faria Neto, A.: A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions. Renew. Sustain. Energy Rev. 135, Article no. 110191 (2021)

    Google Scholar 

  8. Tan, P., Lindberg, P., Eichler, K., Löveryd, P., Johansson, P., Kalagasidis, A.S.: Thermal energy storage using phase change materials: techno-economic evaluation of a cold storage installation in an office building. Appl. Energy 276, Article no. 115433 (2020)

    Google Scholar 

  9. Kočí, J., Fořt, J., Černý, R.: Energy efficiency of latent heat storage systems in residential buildings: coupled effects of wall assembly and climatic conditions. Renew. Sustain. Energy Rev. 132, Article no. 110097 (2020)

    Google Scholar 

  10. Lakhdari, Y.A., Chikh, S., Campo, A.: Analysis of the thermal response of a dual phase change material embedded in a multi-layered building envelope. Appl. Thermal Eng. 179, Article no. 115502 (2020)

    Google Scholar 

  11. Gao, Y., He, F., Meng, X., Wang, Z., Zhang, M., Yu, H., Gao, W.: Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J. Build. Eng. 31, Article no. 101447 (2020)

    Google Scholar 

  12. Vukadinović, A., Radosavljević, J., Đorđević, A.: Energy performance impact of using phase-change materials in thermal storage walls of detached residential buildings with a sunspace. Sol. Energy 206, 228–244 (2020)

    Article  Google Scholar 

  13. Kishore, R.A., Bianchi, M.V.A., Booten, C., Vidal, J., Jackson, R.: Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings. Energy Build. 226, Article no. 110355 (2020)

    Google Scholar 

  14. Gholamibozanjani, G., Farid, M.: Application of an active PCM storage system into a building for heating/cooling load reduction. Appl. Energy 210, Article no. 118572 (2020)

    Google Scholar 

  15. Soares, N., Rosa, N., Costa, J.J., Lopes, A.G., Matias, T., Simões, P.N., Durães, L.: Validation of different numerical models with benchmark experiments for modelling microencapsulated-PCM-based applications for buildings. Int. J. Thermal Sci. 159, Article no. 106565 (2021)

    Google Scholar 

  16. Li, D., Zheng, Y., Liu, C., Wu, G.: Numerical analysis on thermal performance of roof contained PCM of a single residential building. Energy Conv. Manage. 100, 147–156 (2015)

    Article  Google Scholar 

  17. Plytaria, M.T., Tzivanidis, C., Bellos, E., Antonopoulos, K.A.: Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials. Thermal Sci. Eng. Prog. 10, 59–72 (2019)

    Google Scholar 

  18. Wardziak, Ł., Jaworski, M.: Computer simulations of heat transfer in a building integrated heat storage unit made of PCM composite. Thermal Sci. Eng. Prog. 2, 109–118 (2017)

    Article  Google Scholar 

  19. Pirasaci, T.: Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season. Energy 2020, Article no. 118176 (2020)

    Google Scholar 

  20. Zhu, N., Li, S., Hu, P., Lei, F., Deng, R.: Numerical investigations on performance of phase change material Trombe wall in building. Energy 187, Article no. 116057 (2019)

    Google Scholar 

  21. Bergia Boccardo, L., Kazanci, O.B. Quesada Allerhand, J., Olesen, B.W.: Economic comparison of TABS, PCM ceiling panels and all-air systems for cooling offices. Energy Build. 205, Article no. 109527 (2019)

    Google Scholar 

  22. Rucevskis, S., Akishin, P., Korjakins, A.: Performance evaluation of an active PCM thermal energy storage system for space cooling in residential buildings. Environ. Clim. Technol. 23(2), 74–89 (2019)

    Article  Google Scholar 

  23. Lizana, J., de-Borja-Torrejon, M., Barrios-Padura, A., Auer, T., Chacartegui, R.: Passive cooling through phase change materials in buildings. A critical study of implementation alternatives. Appl. Energy 254, Article no. 113658 (2019)

    Google Scholar 

  24. Ramakrishnan, S., Wang, X., Alam, M., Sanjayan, J., Wilson, J.: Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings. Energy Build. 124, 35–45 (2016)

    Article  Google Scholar 

  25. Tenorio, J.A., Sánchez-Ramos, J., Ruiz-Pardo, Á., Álvarez, S., Cabeza, L.F.: Energy efficiency indicators for assessing construction systems storing renewable energy: application to phase change material-bearing façades. Energies 8(8), 8630–8649 (2015)

    Article  Google Scholar 

  26. Bouhal, T., El Rhafiki, T., Kousksou, T., Jamil, A., Zeraouli, Y.: PCM addition inside solar water heaters: Numerical comparative approach. J. Energy Storage 19, 232–246 (2018)

    Article  Google Scholar 

  27. Li, Y., Nord, N., Xiao, Q., Tereshchenko, T.: Building heating applications with phase change material: a comprehensive review. J. Energy Storage 31, Article no. 101634 (2020)

    Google Scholar 

  28. Ogoh, W., Groulx, D.: Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study. Heat Mass Transf. 48, 439–449 (2012)

    Article  Google Scholar 

  29. De Rosa, M., Bianco, V., Scarpa, F., Tagliafico, L.A.: Historical trends and current state of heating and cooling degree days in Italy. Energy Conv. Manage. 90, 323–335 (2015)

    Article  Google Scholar 

  30. Abd Alla, S., Bianco, V., Scarpa, F., Tagliafico, L.A.: Life-cycle approach to the estimation of energy efficiency measures in the buildings sector. Appl. Energy 264, Article no. 114745 (2020)

    Google Scholar 

  31. Konstantinidou, C.A., Lang, W., Papadopoulos, A.M., Santamouris, M.: Life cycle and life cycle cost implications of integrated phase change materials in office buildings. Int. J. Energy Res. 43, 150–166 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Vincenzo Bianco and Federico Scarpa acknowledge the PRIN Project “Heat Transfer and Thermal Energy Storage Enhancement by Foams and Nanoparticles”, Grant n. PRIN-2017F7KZWS, for the support in developing the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianco, V., Marchitto, A., Scarpa, F., Tagliafico, L.A. (2021). Application of PCMs to Improve Energy Efficiency in Residential Buildings. In: Vatin, N., Borodinecs, A., Teltayev, B. (eds) Proceedings of EECE 2020. EECE 2020. Lecture Notes in Civil Engineering, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-72404-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72404-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72403-0

  • Online ISBN: 978-3-030-72404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics