Skip to main content

Modelling Human Biometeorological Conditions Using Meteorological Data from Reanalysis and Objective Analysis—Preliminary Results

  • Conference paper
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 961))

Included in the following conference series:

  • 258 Accesses

Abstract

The influence of the environment on the human beings in the aspect of different weather conditions is one of the main problems in the modern science. The degree of sultriness and coldness are decisive for the regular and stable work of the human thermoregulatory system. That affects the ability of the human beings to doing their work and everyday activities, and more important to the possible advent of different heat and cold related diseases. The weather influence is manifested in different ways, but the most notable one is the sensation to the thermal properties of the environment. That means how cold or how hot the human individual feels it is. Our research is focused on the calculation of three characteristics of the human thermal sensation called biometeorological indices. They are Predicted Mean Vote, Physiological Equivalent Temperature and Universal Thermal Climate Index. The RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environment calculates also these indexes. A model setup is configured for Bulgaria and some adjacent territories and the computations are performed in fine-spaced grid on hourly basis. Assimilated ground measurements from the operative system ProData and data from the meteorological reanalyses ERA5 are used as weather input. The calculations are performed for four typical for each season months and the output is in form of three-dimensional digital maps of the considered indices. The results, which are spatially and temporally consistent, show either high and low spatial variability in different regions of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: FAO Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper. Food and Agriculture Organization of the United Nations, Rome (1998)

    Google Scholar 

  2. ANSI/ASHRAE Standard 55–2004: Thermal Environmental Conditions for Human Occupancy. http://www.aicarr.org/Documents/Editoria_Libri/ASHRAE_PDF/STD55-2004.pdf

  3. Błażejczyk, K., Fiala, D., Bröde, P., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A.: Principles of the New Universal Thermal Climate Index (UTCI) and its Application to Bioclimatic Research in European Scale. Miscellanea Geographica 15, 91–102 (2010)

    Article  Google Scholar 

  4. Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B.: An Introduction To The Universal Thermal Climate Index (UTCI). Geogr. Pol. 86(1), 5–10 (2013)

    Article  Google Scholar 

  5. Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G.: Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 56,481–494 (2012). https://doi.org/10.1007/s00484-011-0454-1

  6. Chervenkov, H., Spiridonov, V., Artinyan, E., Neytchev, P., Slavov, K., Stoyanova, M.: The Operative System ProData – part one: current stage and recent improvements. Bul. J. Meteo Hydro 22(3–4), 73–86 (2017)

    Google Scholar 

  7. Coccolo, S., Kämpf, J., Scartezzini, J., Pearlmutter, D.: Outdoor human comfort and thermal stress: a comprehensive review on models and standards. Urban Climate 18, 33–57 (2016)

    Article  Google Scholar 

  8. Copernicus Climate Change Service (C3S) (2017) ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 10.01.2019. https://cds.climate.copernicus.eu/cdsapp#!/home

  9. Di Napoli, C., Pappenberger, F., Cloke, H.L.: Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 62(7) 1155–1165 (2018). https://doi.org/10.1007/s00484-018-1518-2

  10. Fang, Z., Lin, Z., Mak, Ch.M., Niuc, J., Tse, K.T.: Investigation into sensitivities of factors in outdoor thermal comfort indices. Build. Environ. 128, 129–142 (2018). https://doi.org/10.1016/j.buildenv.2017.11.028

  11. Fanger, P.O.: Thermal Comfort. McGraw-Hill, New York (1972)

    Google Scholar 

  12. Havenith, G., Fiala, D., Błażejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamaki, H., Benshabat, Y., Jendritzky, G.: The UTCI–clothing model. Int. J. Biometeorol. 56(3), 461–470 (2012). https://doi.org/10.1007/s00484-011-0451-4

  13. Höppe, P.R.: Heat balance modelling. Experientia 49(9), 741–746 (1993)

    Article  Google Scholar 

  14. Höppe, P.R.: The physiological equivalent temperature — a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 43, 71 (1999). https://doi.org/10.1007/s004840050118

  15. ISO 7730:2005 Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization

    Google Scholar 

  16. Ivanov, V., Evtimov, S.: Wind Chill Hazard in Bulgaria 2003–2012 Period. Comptes rendus de l’Academie bulgare des Sciences 67(11) (2014)

    Google Scholar 

  17. Ivanov, V., Evtimov, S.: Heat risks in bulgaria during 2003–2012 period. Bulgarian Geophys. J. 40, 3–13 (2014)

    Google Scholar 

  18. Jendritzky, G., Nübler, W.: A model analyzing the urban thermal environment in physiologically significant terms. Meteorol. Atmos. Phys. 29, 313–326 (1981)

    Google Scholar 

  19. Magnusson, L.: The cold spell in eastern Europe in January 2017, ECMWF Newsletter No. 151 (2017). https://www.ecmwf.int/en/newsletter/151/news/cold-spell-eastern-europe-january-2017

  20. Malcheva, K., Trifonova, L., Marinova, T., Bocheva, L., Dimitrov, C., Nikolov, D., Pophristov, V., Ivanov, K., Evgeniev, R., Maneva, V., Neykova, R.: Seasonal climate assessment of the winter 2016–2017 Bul. J. Meteo Hydro 22(5), 38–60 (2017)

    Google Scholar 

  21. Matzarakis, A., Amelung, B.: Seasonal Forecasts, Climatic Change and Human Health (Health and Climate). Chapter 9 — Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. Springer, Netherlands (2008)

    Google Scholar 

  22. Matzarakis, A., Mayer, H.: Heat stress in Greece. Int. J. Biometeorol. 41, 34–39 (1997) . https://doi.org/10.1007/s004840050051

  23. Matzarakis, A., Mayer, H.: Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 43(2), 76-84 (1999). https://doi.org/10.1007/s004840050119

  24. Matzarakis, A., Georgiadis, T., Rossi, F. (2007) Thermal bioclimate analysis for Europe and Italy. Il Nuovo Cimento, Issue 6, 623–632 https://doi.org/10.1393/ncc/i2007-10268-0

  25. Matzarakis, A., Muthers, St., Koch, E.: Human biometeorological evaluation of heat-related mortality in Vienna. Theor. Appl. Climatol. 105, 1–10 (2011). https://doi.org/10.1007/s00704-010-0372-x

  26. Matzarakis, A., Rutz, F., Mayer, H.: Modelling radiation fluxes in simple and complex environments — application of the RayMan model. Int. J. Biometeorol. 51(4):323–334 (2007). https://doi.org/10.1007/s00484-006-0061-8

  27. Matzarakis, A. Rutz, F., Mayer, H.: Modelling radiation fluxes in simple and complex environments — basics of the RayMan model. Int. J. Biometeorol. 54(2), 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0

  28. Potchter, O., Cohena, P., Lin T.P., Matzarakis, A.: Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Science of the Total Environment 631–632, 390–406 (2018). https://doi.org/ 10.1016/j.scitotenv.2018.02.276

  29. Siple, P., Passel, C.: Measurements of dry atmospheric cooling in subfreezing temperatures. Proc. Am. Philos. Soc. 89(1), 177–199 (1945)

    Google Scholar 

  30. Starr, C., McMillan, B.: Human Biology. Brooks/Cole Cengager Learning (2010)

    Google Scholar 

  31. Thom, E.C.: The discomfort index. Weatherwise 12, 57–60 (1959)

    Article  Google Scholar 

  32. VDI (1998) VDI guideline 3787, part 2 Methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning, part I: climate

    Google Scholar 

Download references

Acknowledgements

We acknowledge the RayMan model vendors and the other organizations (ECMWF, UNI-DATA, MPI-M), which provides free of charge software and data. Without their innovative data services and tools this study would be not possible. The research work is supported by the Project “NATIONAL GEO-INFORMATION CENTER”, subject of the National Road Map for Scientific Infrastructure 2017–2023, funded by Contr. No D01-161/28.08.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, V., Chervenkov, H. (2021). Modelling Human Biometeorological Conditions Using Meteorological Data from Reanalysis and Objective Analysis—Preliminary Results. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol 961. Springer, Cham. https://doi.org/10.1007/978-3-030-71616-5_16

Download citation

Publish with us

Policies and ethics