Skip to main content

Molecular Pathology

  • Chapter
  • First Online:
Urinary Bladder Pathology
  • 743 Accesses

Abstract

Urothelial cancer (UC) is a molecularly and clinicopathologically heterogeneous disease. Recent advances in the genetic studies of UC have expanded our knowledge of the disease from a poorly understood aggregate of pathologies to more specific and molecularly characterized subtypes. This may effectively enable the implementation of personalized therapies and better patient management. The current section summarizes the contemporary understanding of the molecular pathology of bladder cancer, including its molecular pathways and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandberg AA. Cytogenetics and molecular genetics of bladder cancer: a personal view. Am J Med Genet. 2002;115(3):173–82. https://doi.org/10.1002/ajmg.10693.

    Article  PubMed  Google Scholar 

  2. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713–25. https://doi.org/10.1038/nrc1697.

    Article  CAS  PubMed  Google Scholar 

  3. Matsuyama H, Ikemoto K, Eguchi S, et al. Copy number aberrations using multicolour fluorescence in situ hybridization (FISH) for prognostication in non-muscle-invasive bladder cancer (NIMBC). BJU Int. 2014;113(4):662–7. https://doi.org/10.1111/bju.12232.

    Article  PubMed  Google Scholar 

  4. Hurst CD, Alder O, Platt FM, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017;32(5):701–715.e7. https://doi.org/10.1016/j.ccell.2017.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Granberg-Ohman I, Tribukait B, Wijkström H. Cytogenetic analysis of 62 transitional cell bladder carcinomas. Cancer Genet Cytogenet. 1984;11(1):69–85. https://doi.org/10.1016/0165-4608(84)90100-6.

    Article  CAS  PubMed  Google Scholar 

  6. Richter J, Jiang F, Görög JP, et al. Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res. 1997;57(14):2860–4.

    CAS  PubMed  Google Scholar 

  7. Hurst CD, Knowles MA. Mutational landscape of non-muscle-invasive bladder cancer [published online ahead of print, 2018 Nov 13]. Urol Oncol. 2018;S1078-1439(18)30398-3.; https://doi.org/10.1016/j.urolonc.2018.10.015.

  8. Kawauchi S, Sakai H, Ikemoto K, et al. 9p21 index as estimated by dual-color fluorescence in situ hybridization is useful to predict urothelial carcinoma recurrence in bladder washing cytology. Hum Pathol. 2009;40(12):1783–9. https://doi.org/10.1016/j.humpath.2009.06.011.

    Article  CAS  PubMed  Google Scholar 

  9. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22. https://doi.org/10.1038/nature12965.

    Article  CAS  Google Scholar 

  10. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer [published correction appears in Cell. 2018 Aug 9;174(4):1033]. Cell. 2017;171(3):540–556.e25. https://doi.org/10.1016/j.cell.2017.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ward DG, Gordon NS, Boucher RH, et al. Targeted deep sequencing of urothelial bladder cancers and associated urinary DNA: a 23-gene panel with utility for non-invasive diagnosis and risk stratification. BJU Int. 2019;124(3):532–44. https://doi.org/10.1111/bju.14808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeeta RR, Gordon N, Baxter L, Goel A, Noyvert B, Ott S, Boucher R, Humayun-Zakaria N, Arnold R, James N, Zeegers M, Cheng K, Bryan R, Ward D. Non-coding mutations in urothelial bladder cancer: biological and clinical relevance and potential utility as biomarkers. Bladder Cancer. 2019;5:263–72. https://doi.org/10.3233/BLC-190251.

    Article  Google Scholar 

  13. Hurst CD, Knowles MA. Mutational landscape of non-muscle-invasive bladder cancer [published online ahead of print, 2018 Nov 13]. Urol Oncol. 2018;S1078-1439(18)30398-3; https://doi.org/10.1016/j.urolonc.2018.10.015.

  14. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8. https://doi.org/10.1038/nature12213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Wu G, Shan Y, Hartmann C, von Deimling A, Xing M. Highly prevalent TERT promoter mutations in bladder cancer and glioblastoma. Cell Cycle. 2013;12(10):1637–8. https://doi.org/10.4161/cc.24662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65(2):360–6. https://doi.org/10.1016/j.eururo.2013.08.052.

    Article  CAS  PubMed  Google Scholar 

  17. Colebatch AJ, Dobrovic A, Cooper WA. TERT gene: its function and dysregulation in cancer. J Clin Pathol. 2019;72(4):281–4. https://doi.org/10.1136/jclinpath-2018-205653.

    Article  CAS  PubMed  Google Scholar 

  18. Moch H, Humphrey PA, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. 4th ed. Lyon: IARC Press; 2016.

    Google Scholar 

  19. Wang CC, Huang CY, Jhuang YL, Chen CC, Jeng YM. Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential. Histopathology. 2018;72(5):795–803. https://doi.org/10.1111/his.13441.

    Article  PubMed  Google Scholar 

  20. Günes C, Rudolph KL. The role of telomeres in stem cells and cancer. Cell. 2013;152(3):390–3. https://doi.org/10.1016/j.cell.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  21. di Martino E, Tomlinson DC, Knowles MAA. Decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol. 2012;2012:429213. https://doi.org/10.1155/2012/429213.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo CC, Czerniak B. Bladder cancer in the genomic era. Arch Pathol Lab Med. 2019;143(6):695–704. https://doi.org/10.5858/arpa.2018-0329-RA.

    Article  CAS  PubMed  Google Scholar 

  23. Netto GJ, Cheng L. Emerging critical role of molecular testing in diagnostic genitourinary pathology. Arch Pathol Lab Med. 2012;136(4):372–90. https://doi.org/10.5858/arpa.2011-0471-RA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo G, Sun X, Chen C, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. 2013;45(12):1459–63. https://doi.org/10.1038/ng.2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur Urol. 2017;72(6):952–9. https://doi.org/10.1016/j.eururo.2017.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones TD, Wang M, Eble JN, et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res. 2005;11(18):6512–9. https://doi.org/10.1158/1078-0432.CCR-05-0891.

    Article  CAS  PubMed  Google Scholar 

  27. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41. https://doi.org/10.1038/nrc3817.

    Article  CAS  PubMed  Google Scholar 

  28. Sanli O, Dobruch J, Knowles MA, et al. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022. Published 2017 Apr 13. https://doi.org/10.1038/nrdp.2017.22.

    Article  PubMed  Google Scholar 

  29. Amin MB, Eble JN. Urological pathology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  30. Rebouissou S, Hérault A, Letouzé E, et al. CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J Pathol. 2012;227(3):315–24. https://doi.org/10.1002/path.4017.

    Article  CAS  PubMed  Google Scholar 

  31. Downes MR, Weening B, van Rhijn BW, Have CL, Treurniet KM, van der Kwast TH. Analysis of papillary urothelial carcinomas of the bladder with grade heterogeneity: supportive evidence for an early role of CDKN2A deletions in the FGFR3 pathway. Histopathology. 2017;70(2):281–9. https://doi.org/10.1111/his.13063.

    Article  PubMed  Google Scholar 

  32. Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158(6):1955–9. https://doi.org/10.1016/S0002-9440(10)64665-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura T, Suzuki H, Ohashi T, Asano K, Kiyota H, Eto Y. The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas [published correction appears in Cancer 2002 Apr 1;94(7):2117]. Cancer. 2001;92(10):2555–61. https://doi.org/10.1002/1097-0142(20011115)92:10<2555::aid-cncr1607>3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  34. Hernández S, López-Knowles E, Lloreta J, et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol. 2006;24(22):3664–71. https://doi.org/10.1200/JCO.2005.05.1771.

    Article  CAS  PubMed  Google Scholar 

  35. van Rhijn BW, van der Kwast TH, Liu L, et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol. 2012;187(1):310–4. https://doi.org/10.1016/j.juro.2011.09.008.

    Article  CAS  PubMed  Google Scholar 

  36. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821. Published 2010 Nov 3. https://doi.org/10.1371/journal.pone.0013821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24(33):5218–25. https://doi.org/10.1038/sj.onc.1208705.

    Article  CAS  PubMed  Google Scholar 

  38. Glaser AP, Fantini D, Shilatifard A, Schaeffer EM, Meeks JJ. The evolving genomic landscape of urothelial carcinoma [published online ahead of print, 2017 Feb 7]. Nat Rev Urol. 2017;14(4):215–29. https://doi.org/10.1038/nrurol.2017.11.

    Article  CAS  PubMed  Google Scholar 

  39. Hartmann A, Schlake G, Zaak D, et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 2002;62(3):809–18.

    CAS  PubMed  Google Scholar 

  40. Kim J, Akbani R, Creighton CJ, et al. Invasive bladder cancer: genomic insights and therapeutic promise. Clin Cancer Res. 2015;21(20):4514–24. https://doi.org/10.1158/1078-0432.CCR-14-1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hedegaard J, Lamy P, Nordentoft I, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016;30(1):27–42. https://doi.org/10.1016/j.ccell.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  42. Kiss B, Wyatt AW, Douglas J, et al. Her2 alterations in muscle-invasive bladder cancer: Patient selection beyond protein expression for targeted therapy. Sci Rep. 2017;7:42713. Published 2017 Feb 16. https://doi.org/10.1038/srep42713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen PC, Yu HJ, Chang YH, Pan CC. Her2 amplification distinguishes a subset of non-muscle-invasive bladder cancers with a high risk of progression. J Clin Pathol. 2013;66(2):113–9. https://doi.org/10.1136/jclinpath-2012-200944.

    Article  PubMed  Google Scholar 

  44. Breyer J, Otto W, Wirtz RM, et al. ERBB2 expression as potential risk-stratification for early cystectomy in patients with pT1 bladder cancer and concomitant carcinoma in situ. Urol Int. 2017;98(3):282–9. https://doi.org/10.1159/000453670.

    Article  CAS  PubMed  Google Scholar 

  45. López-Knowles E, Hernández S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401–4. https://doi.org/10.1158/0008-5472.CAN-06-1182.

    Article  PubMed  Google Scholar 

  46. Kim PH, Cha EK, Sfakianos JP, et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur Urol. 2015;67(2):198–201. https://doi.org/10.1016/j.eururo.2014.06.050.

    Article  PubMed  Google Scholar 

  47. Obermann EC, Junker K, Stoehr R, et al. Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J Pathol. 2003;199(1):50–7. https://doi.org/10.1002/path.1259.

    Article  CAS  PubMed  Google Scholar 

  48. Chow NH, Cairns P, Eisenberger CF, et al. Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int J Cancer. 2000;89(6):514–8.

    Article  CAS  PubMed  Google Scholar 

  49. Adar R, Monsonego-Ornan E, David P, Yayon A. Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization. J Bone Miner Res. 2002;17(5):860–8. https://doi.org/10.1359/jbmr.2002.17.5.860.

    Article  CAS  PubMed  Google Scholar 

  50. Mo L, Zheng X, Huang HY, et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J Clin Invest. 2007;117(2):314–25. https://doi.org/10.1172/JCI30062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212–5. https://doi.org/10.1002/ijc.21958.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang ZT, Pak J, Huang HY, et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene. 2001;20(16):1973–80. https://doi.org/10.1038/sj.onc.1204315.

    Article  CAS  PubMed  Google Scholar 

  53. Chamie K, Litwin MS, Bassett JC, et al. Recurrence of high-risk bladder cancer: a population-based analysis. Cancer. 2013;119(17):3219–27. https://doi.org/10.1002/cncr.28147.

    Article  PubMed  Google Scholar 

  54. Pützer BM, Engelmann D. E2F1 apoptosis counterattacked: evil strikes back. Trends Mol Med. 2013;19(2):89–98. https://doi.org/10.1016/j.molmed.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  55. Lee SR, Roh YG, Kim SK, et al. Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer. Clin Cancer Res. 2015;21(23):5391–403. https://doi.org/10.1158/1078-0432.CCR-14-2680.

    Article  CAS  PubMed  Google Scholar 

  56. Meeks JJ, Carneiro BA, Pai SG, et al. Genomic characterization of high-risk non-muscle invasive bladder cancer. Oncotarget. 2016;7(46):75176–84. https://doi.org/10.18632/oncotarget.12661.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Isharwal S, Hu W, Sarungbam J, et al. Genomic landscape of inverted urothelial papilloma and urothelial papilloma of the bladder. J Pathol. 2019;248(3):260–5. https://doi.org/10.1002/path.5261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Lopez-Beltran A, Osunkoya AO, et al. TERT promoter mutation status in sarcomatoid urothelial carcinomas of the upper urinary tract. Future Oncol. 2017;13(8):705–14. https://doi.org/10.2217/fon-2016-0414.

    Article  CAS  PubMed  Google Scholar 

  59. van Rhijn BW, Montironi R, Zwarthoff EC, Jöbsis AC, van der Kwast TH. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198(2):245–51. https://doi.org/10.1002/path.1202.

    Article  CAS  PubMed  Google Scholar 

  60. Collomp K, Ahmaidi S, Audran M, Chanal JL, Préfaut C. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test. Int J Sports Med. 1991;12(5):439–43. https://doi.org/10.1055/s-2007-1024710.

    Article  CAS  PubMed  Google Scholar 

  61. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Mod Pathol. 2009;22(5):627–32. https://doi.org/10.1038/modpathol.2009.28.

    Article  CAS  PubMed  Google Scholar 

  62. McDaniel AS, Zhai Y, Cho KR, et al. HRAS mutations are frequent in inverted urothelial neoplasms. Hum Pathol. 2014;45(9):1957–65. https://doi.org/10.1016/j.humpath.2014.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng L, Davidson DD, Wang M, et al. Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change. Histopathology. 2016;69(1):107–13. https://doi.org/10.1111/his.12920.

    Article  PubMed  Google Scholar 

  64. Akgul M, MacLennan GT, Cheng L. Distinct mutational landscape of inverted urothelial papilloma. J Pathol. 2019;249(1):3–5. https://doi.org/10.1002/path.5307.

    Article  CAS  PubMed  Google Scholar 

  65. Brown NA, Lew M, Weigelin HC, et al. Comparative study of TERT promoter mutation status within spatially, temporally and morphologically distinct components of urothelial carcinoma. Histopathology. 2018;72(2):354–6. https://doi.org/10.1111/his.13318.

    Article  PubMed  Google Scholar 

  66. Vail E, Zheng X, Zhou M, et al. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder. Ann Diagn Pathol. 2015;19(5):301–5. https://doi.org/10.1016/j.anndiagpath.2015.06.007.

    Article  PubMed  Google Scholar 

  67. Al-Ahmadie HA, Iyer G, Lee BH, et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat Genet. 2016;48(4):356–8. https://doi.org/10.1038/ng.3503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palsgrove DN, Taheri D, Springer SU, et al. Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum Pathol. 2019;85:1–9. https://doi.org/10.1016/j.humpath.2018.10.033.

    Article  CAS  PubMed  Google Scholar 

  69. Guo CC, Dadhania V, Zhang L, et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur Urol. 2016;70(4):611–20. https://doi.org/10.1016/j.eururo.2016.02.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tschui J, Vassella E, Bandi N, et al. Morphological and molecular characteristics of HER2 amplified urothelial bladder cancer. Virchows Arch. 2015;466(6):703–10. https://doi.org/10.1007/s00428-015-1729-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneider SA, Sukov WR, Frank I, et al. Outcome of patients with micropapillary urothelial carcinoma following radical cystectomy: ERBB2 (HER2) amplification identifies patients with poor outcome. Mod Pathol. 2014;27(5):758–64. https://doi.org/10.1038/modpathol.2013.201.

    Article  CAS  PubMed  Google Scholar 

  72. Isharwal S, Huang H, Nanjangud G, et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum Pathol. 2018;77:63–9. https://doi.org/10.1016/j.humpath.2018.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iyer G, Al-Ahmadie H, Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133–40. https://doi.org/10.1200/JCO.2012.46.5740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fleischmann A, Rotzer D, Seiler R, Studer UE, Thalmann GN. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur Urol. 2011;60(2):350–7. https://doi.org/10.1016/j.eururo.2011.05.035.

    Article  CAS  PubMed  Google Scholar 

  75. Vaira V, Faversani A, Dohi T, et al. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene. 2012;31(1):27–38. https://doi.org/10.1038/onc.2011.209.

    Article  CAS  PubMed  Google Scholar 

  76. Gentili C, Castor D, Kaden S, et al. Chromosome missegregation associated with RUVBL1 deficiency. PLoS One. 2015;10(7):e0133576. Published 2015 Jul 22. https://doi.org/10.1371/journal.pone.0133576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sanfrancesco J, McKenney JK, Leivo MZ, Gupta S, Elson P, Hansel DE. Sarcomatoid Urothelial carcinoma of the bladder: analysis of 28 cases with emphasis on clinicopathologic features and markers of epithelial-to-mesenchymal transition. Arch Pathol Lab Med. 2016;140(6):543–51. https://doi.org/10.5858/arpa.2015-0085-OA.

    Article  PubMed  Google Scholar 

  78. Sung MT, Wang M, MacLennan GT, et al. Histogenesis of sarcomatoid urothelial carcinoma of the urinary bladder: evidence for a common clonal origin with divergent differentiation. J Pathol. 2007;211(4):420–30. https://doi.org/10.1002/path.2129.

    Article  PubMed  Google Scholar 

  79. Guo CC, Majewski T, Zhang L, et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 2019;27(6):1781–1793.e4. https://doi.org/10.1016/j.celrep.2019.04.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Genitsch V, Kollár A, Vandekerkhove G, et al. Morphologic and genomic characterization of urothelial to sarcomatoid transition in muscle-invasive bladder cancer. Urol Oncol. 2019;37(11):826–36. https://doi.org/10.1016/j.urolonc.2019.09.025.

    Article  CAS  PubMed  Google Scholar 

  81. Weyerer V, Weisser R, Moskalev EA, et al. Distinct genetic alterations and luminal molecular subtype in nested variant of urothelial carcinoma. Histopathology. 2019;75(6):865–75. https://doi.org/10.1111/his.13958.

    Article  PubMed  Google Scholar 

  82. Zhong M, Tian W, Zhuge J, et al. Distinguishing nested variants of urothelial carcinoma from benign mimickers by TERT promoter mutation. Am J Surg Pathol. 2015;39(1):127–31. https://doi.org/10.1097/PAS.0000000000000305.

    Article  PubMed  Google Scholar 

  83. Chang MT, Penson A, Desai NB, et al. Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin Cancer Res. 2018;24(8):1965–73. https://doi.org/10.1158/1078-0432.CCR-17-2655.

    Article  CAS  PubMed  Google Scholar 

  84. Shen P, Jing Y, Zhang R, et al. Comprehensive genomic profiling of neuroendocrine bladder cancer pinpoints molecular origin and potential therapeutics. Oncogene. 2018;37(22):3039–44. https://doi.org/10.1038/s41388-018-0192-5.

    Article  CAS  PubMed  Google Scholar 

  85. Li Q, Wang H, Peng H, et al. MicroRNAs: key players in bladder Cancer. Mol Diagn Ther. 2019;23(5):579–601. https://doi.org/10.1007/s40291-019-00410-4.

    Article  PubMed  Google Scholar 

  86. Rouprêt M, Fromont G, Azzouzi AR, et al. Microsatellite instability as predictor of survival in patients with invasive upper urinary tract transitional cell carcinoma. Urology. 2005;65(6):1233–7. https://doi.org/10.1016/j.urology.2005.01.019.

    Article  PubMed  Google Scholar 

  87. Mueller CM, Caporaso N, Greene MH. Familial and genetic risk of transitional cell carcinoma of the urinary tract. Urol Oncol. 2008;26(5):451–64. https://doi.org/10.1016/j.urolonc.2008.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Engel C, Loeffler M, Steinke V, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30(35):4409–15. https://doi.org/10.1200/JCO.2012.43.2278.

    Article  PubMed  Google Scholar 

  89. Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol. 2001;116(1):79–86. https://doi.org/10.1309/K5P2-4Y8B-7L5A-FAA9.

    Article  CAS  PubMed  Google Scholar 

  90. Hajdinjak T. UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol. 2008;26(6):646–51. https://doi.org/10.1016/j.urolonc.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  91. Kandimalla R, Masius R, Beukers W, et al. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res. 2013;19(17):4760–9. https://doi.org/10.1158/1078-0432.CCR-12-3276.

    Article  CAS  PubMed  Google Scholar 

  92. Beukers W, van der Keur KA, Kandimalla R, et al. FGFR3, TERT and OTX1 as a urinary biomarker combination for surveillance of patients with bladder cancer in a large prospective multicenter study. J Urol. 2017;197(6):1410–8. https://doi.org/10.1016/j.juro.2016.12.096.

    Article  CAS  PubMed  Google Scholar 

  93. Rodriguez Pena MDC, Tregnago AC, Eich ML, et al. Spectrum of genetic mutations in de novo PUNLMP of the urinary bladder. Virchows Arch. 2017;471(6):761–7. https://doi.org/10.1007/s00428-017-2164-5.

    Article  CAS  PubMed  Google Scholar 

  94. Wang CC, Huang CY, Jhuang YL, Chen CC, Jeng YM. Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential. Histopathology. 2018;72(5):795–803. https://doi.org/10.1111/his.13441.

    Article  PubMed  Google Scholar 

  95. Pal SK, Rosenberg JE, Hoffman-Censits JH, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 2018;8(7):812–21. https://doi.org/10.1158/2159-8290.CD-18-0229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Springer SU, Chen CH, Rodriguez Pena MDC, et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy [published correction appears in Elife. 2018 Nov 12;7:]. Elife. 2018;7:e32143. Published 2018 Mar 20. https://doi.org/10.7554/eLife.32143

  97. Bernard-Pierrot I, Brams A, Dunois-Lardé C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740–7. https://doi.org/10.1093/carcin/bgi290.

    Article  CAS  PubMed  Google Scholar 

  98. Tomlinson DC, Hurst CD, Knowles MA. Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene. 2007;26(40):5889–99. https://doi.org/10.1038/sj.onc.1210399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lamont FR, Tomlinson DC, Cooper PA, Shnyder SD, Chester JD, Knowles MA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br J Cancer. 2011;104(1):75–82. https://doi.org/10.1038/sj.bjc.6606016.

    Article  CAS  PubMed  Google Scholar 

  100. Knowles MA. Novel therapeutic targets in bladder cancer: mutation and expression of FGF receptors. Future Oncol. 2008;4(1):71–83. https://doi.org/10.2217/14796694.4.1.71.

    Article  CAS  PubMed  Google Scholar 

  101. Loriot Y, Necchi A, Park SH, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381(4):338–48. https://doi.org/10.1056/NEJMoa1817323.

    Article  CAS  PubMed  Google Scholar 

  102. Teo MY, Bambury RM, Zabor EC, et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Cancer Res. 2017;23(14):3610–8. https://doi.org/10.1158/1078-0432.CCR-16-2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Teo MY, Seier K, Ostrovnaya I, et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol. 2018;36(17):1685–94. https://doi.org/10.1200/JCO.2017.75.7740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Desai NB, Scott SN, Zabor EC, et al. Genomic characterization of response to chemoradiation in urothelial bladder cancer. Cancer. 2016;122(23):3715–23. https://doi.org/10.1002/cncr.30219.

    Article  CAS  PubMed  Google Scholar 

  105. Liu D, Plimack ER, Hoffman-Censits J, et al. Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma. JAMA Oncol. 2016;2(8):1094–6. https://doi.org/10.1001/jamaoncol.2016.1056.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Plimack ER, Dunbrack RL, Brennan TA, et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol. 2015;68(6):959–67. https://doi.org/10.1016/j.eururo.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lotan Y, Woldu SL, Sanli O, Black P, Milowsky MI. Modelling cost-effectiveness of a biomarker-based approach to neoadjuvant chemotherapy for muscle-invasive bladder cancer. BJU Int. 2018;122(3):434–40. https://doi.org/10.1111/bju.14220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 2014;281(7):1750–8. https://doi.org/10.1111/febs.12737.

    Article  CAS  PubMed  Google Scholar 

  109. Ke HL, Lin J, Ye Y, et al. Genetic variations in glutathione pathway genes predict cancer recurrence in patients treated with transurethral resection and Bacillus Calmette-Guerin instillation for non-muscle invasive bladder cancer. Ann Surg Oncol. 2015;22(12):4104–10. https://doi.org/10.1245/s10434-015-4431-5.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kim YJ, Ha YS, Kim SK, et al. Gene signatures for the prediction of response to Bacillus Calmette-Guerin immunotherapy in primary pT1 bladder cancers. Clin Cancer Res. 2010;16(7):2131–7. https://doi.org/10.1158/1078-0432.CCR-09-3323.

    Article  CAS  PubMed  Google Scholar 

  111. Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Treatment of non-muscle invasive bladder cancer with Bacillus Calmette-Guerin (BCG): Biological markers and simulation studies. BBA Clin. 2015;(4):27–34. Published 2015 Jun 10. https://doi.org/10.1016/j.bbacli.2015.06.002.

  112. Ahirwar DK, Mandhani A, Mittal RD. IL-8 -251 T > A polymorphism is associated with bladder cancer susceptibility and outcome after BCG immunotherapy in a northern Indian cohort. Arch Med Res. 2010;41(2):97–103. https://doi.org/10.1016/j.arcmed.2010.03.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Ertoy Baydar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ertoy Baydar, D. (2021). Molecular Pathology. In: Zhou, H., Guo, C.C., Ro, J.Y. (eds) Urinary Bladder Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-71509-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71509-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71508-3

  • Online ISBN: 978-3-030-71509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics