Skip to main content

On Application of Machine Learning Models for Prediction of Failures in Production Lines

  • Conference paper
  • First Online:
Advances in Automation II (RusAutoCon 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 729))

Included in the following conference series:

  • 511 Accesses

Abstract

Fault detection of production lines is an important part of the manufacturing process. Production line monitoring focuses at detecting emerging faults at an early stage to make better maintenance. Therefore, at the present time the prediction of faults of production lines is a highly topical issue. The machine learning methods are an effective tool for solving this problem. The paper deals with the problem of predicting the failure of production lines using methods of extreme gradient boosting, random forest and light gradient boosting. Extreme Gradient Boosting presents an ensemble of weak models, which are transformed into a high performance model with the help combination algorithm. Light gradient boosting build the decision tree vertically while other boosting algorithms grow trees horizontally. Light gradient boosting applies the leaf-wise strategy while level-wise strategy is used by extreme gradient boosting. The main goal is to compare the prediction results obtained by different methods. The extreme gradient boosting and light gradient boosting demonstrate the results with the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaslavsky, A., Perera, C., Georgakopoulos, D.: Sensing as a service and big data. In: Proceedings of the International Conference on Advances in Cloud Computing India, July 2012, pp. 21–29 (2012)

    Google Scholar 

  2. Eaton, C., Deroos, D., Deutsch, T., et al.: Understanding big data: analytics for enterprise class Hadoop and streaming data 11(1) (2011). https://doi.org/10.1115/1.2194554

  3. Harding, J.A., Shahbaz, M., Srinivas, et al.: Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128(4), 969–976 (2006). https://doi.org/10.1115/1.2194554

    Article  Google Scholar 

  4. Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2009)

    Article  Google Scholar 

  5. Li, Y., Hung, E.: Building a decision cluster forest model to classify high dimensional data with multi-classes. In: Zhou, Z.H., Washio, T. (eds.) Advances in Machine Learning. Lecture Notes in Computer Science, vol. 5828. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05224-8_21

  6. Feldman, D., Schmidt, M., Sohler, C.: Turning Big data into tiny data Constant-size coresets for k-means, PCA and projective clustering. In: Proceedings of the XXIV Annual ACM-SIAM Symposium Discrete Algorithms, pp. 1434–1453 (2013). https://doi.org/10.1137/18M1209854

  7. Malhi, A., Gao, R.X.: PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 53(6), 1517–1525 (2004)

    Article  Google Scholar 

  8. Sun, W., Chen, J., Li, J.: Decision tree and PCA-based fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 21(3), 1300–1317 (2007)

    Article  Google Scholar 

  9. Wolbrecht, E., D’ambrosio B, Paasch R, , et al.: Monitoring and diagnosis of a multistage manufacturing process using Bayesian networks. Artif. Intell. Eng. Des. Anal. Manuf. 14(1), 53–67 (2000)

    Article  Google Scholar 

  10. Cho, S., Asfour, S., Onar, A., et al.: Tool breakage detection using support vector machine learning in a milling process. Int. J. Mach. Tools Manuf. 45(3), 241–249 (2005)

    Article  Google Scholar 

  11. Cabrera, D., Sancho, F., Sanchez, R.V., et al.: Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition. Front. Mech. Eng. 10(3), 277–286 (2015)

    Article  Google Scholar 

  12. Schlechtingen, M., Santos, I.F.: Comparative analysis of neural network and regression-based condition monitoring approaches for wind turbine fault detection. Mech. Syst. Signal Process 25(5), 1849–1875 (2011)

    Article  Google Scholar 

  13. Zaher, A., McArthur, S., Infield, D., et al.: Online wind turbine fault detection through automated SCADA data analysis. Wind Energy 12(6), 574–593 (2009)

    Article  Google Scholar 

  14. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  15. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, p. 6645 (2013)

    Google Scholar 

  16. Zhao, R., Yan, R., Chen, Z., et al.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115(15), 213–237 (2016). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  17. Wang, L., Zhang, Z., Xu, J., Liu, R.: Wind turbine blade breakage monitoring with deep autoencoders. IEEE Trans. Smart Grid 9(4), 2824–2833 (2016). https://doi.org/10.1109/TSG.2016.2621135

    Article  Google Scholar 

  18. Wang, L., Zhang, Z., Long, H., et al.: Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Ind. Inform. 13(3), 1360–1368 (2017)

    Article  Google Scholar 

  19. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  21. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  22. Ke, G., Meng, Q., Finley, T., et al.: LightGBM: A Highly Efficient Gradient Boosting. NIPS, Long beach (2017)

    Google Scholar 

  23. Bosch production line performance (2016). https://www.kaggle.com/c/bosch-production-line-performance. Accessed 20 Apr 2020

  24. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta Protein Struc. 405(2), 442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mokeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mokeev, V.V. (2021). On Application of Machine Learning Models for Prediction of Failures in Production Lines. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation II. RusAutoCon 2020. Lecture Notes in Electrical Engineering, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-030-71119-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71119-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71118-4

  • Online ISBN: 978-3-030-71119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics