Skip to main content

Towards Construction Progress Estimation Based on Images Captured on Site

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2020)

Abstract

State of the art internet of things (IoT) and mobile monitoring systems promise to help gathering real time progress information from construction sites. However, on remote sites the adaptation of those technologies is frequently difficult due to a lack of infrastructure and often harsh and dynamic environments. On the other hand, visual inspection by experts usually allows a quick assessment of a project’s state. In some fields, drones are already commonly used to capture aerial footage for the purpose of state estimation by domain experts.

We propose a two-stage model for progress estimation leveraging images taken at the site. Stage 1 is dedicated to extract possible visual cues, like vehicles and resources. Stage 2 is trained to map the visual cues to specific project states. Compared to an end-to-end learning task, we intend to have an interpretable representation after the first stage (e.g. what objects are present, or later what are their relationships (spatial/semantic)). We evaluated possible methods for the pipeline in two use-case scenarios - (1) road and (2) wind turbine construction.

We evaluated methods like YOLOv3-SPP for object detection, and compared various methods for image segmentation, like Encoder-Decoder, DeepLab V3, etc. For the progress state estimation a simple decision tree classifier was used in both scenarios. Finally, we tested progress estimation by a sentence classification network based on provided free-text image descriptions.

This work has been partly funded by the Federal Ministry of Education and Research of Germany (BMBF) within the framework of the project ConWearDi (project number 02K16C034).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, N., Izhar, M.A., Najam, F.A.: Construction monitoring and reporting using drones and unmanned aerial vehicles (UAVs). In: The Tenth International Conference on Construction in the 21st Century (CITC-10) (2018)

    Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Bucchiarone, A., et al.: Smart construction: remote and adaptable management of construction sites through IoT. IEEE Internet Things Mag. 2(3), 38–45 (2019). https://doi.org/10.1109/IOTM.0001.1900044. https://ieeexplore.ieee.org/document/8950968, print ISSN: 2576-3180 Electronic ISSN: 2576-3199

  4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017)

    Google Scholar 

  5. Congress, S.S.C., Puppala, A.J.: Novel methodology of using aerial close range photogrammetry technology for monitoring the pavement construction projects. In: International Airfield and Highway Pavements Conference 2019, pp. 121–130. American Society of Civil Engineers (2019). https://doi.org/10.1061/9780784482476.014

  6. Drath, R., Horch, A.: Industrie 4.0: Hit or hype? [industry forum]. IEEE Ind. Electron. Mag. 8(2), 56–58 (2014)

    Google Scholar 

  7. Jocher, G., et al.: ultralytics/yolov3: Rectangular Inference, Conv2d + Batchnorm2d Layer Fusion (2019). https://doi.org/10.5281/zenodo.2672652

  8. Kestur, R., et al.: UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 12(1), 016020 (2018). https://doi.org/10.1117/1.JRS.12.016020

  9. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/D14-1181, https://www.aclweb.org/anthology/D14-1181

  10. Kopsida, M., Brilakis, I., Vela, P.: A review of automated construction progress monitoring and inspection methods. In: Proceedings of the 32nd CIB W78 Conference on Construction IT (2015)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Navon, R., Shpatnitsky, Y.: Field experiments in automated monitoring of road construction. J. Constr. Eng. Manage. 131(4), 487–493 (2005). https://doi.org/10.1061/(ASCE)0733-9364(2005)131:4(487)

    Article  Google Scholar 

  13. Navon, R., Shpatnitsky, Y.: A model for automated monitoring of road construction. Constr. Manage. Econ. 23(9), 941–951 (2005). https://doi.org/10.1080/01446190500183917

    Article  Google Scholar 

  14. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411–458 (2018). https://doi.org/10.1002/net.21818

    Article  MathSciNet  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017)

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  21. Valada, A., Vertens, J., Dhall, A., Burgard, W.: Adapnet: adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4644–4651. IEEE (2017)

    Google Scholar 

  22. Vick, S., Brilakis, I.: Road design layer detection in point cloud data for construction progress monitoring. J. Comput. Civ. Eng. 32(5) (2018). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000772

  23. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  24. Wu, W., et al.: Coupling deep learning and UAV for infrastructure condition assessment automation. In: 2018 IEEE International Smart Cities Conference (ISC2), pp. 1–7. IEEE, 16–19 September 2018. https://doi.org/10.1109/ISC2.2018.8656971

  25. Xiao, X., Wang, L., Ding, K., Xiang, S., Pan, C.: Deep hierarchical encoder-decoder network for image captioning. IEEE Trans. Multimed. 21(11), 2942–2956 (2019)

    Article  Google Scholar 

  26. Yao, T., Pan, Y., Li, Y., Mei, T.: Exploring visual relationship for image captioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 711–727. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_42

    Chapter  Google Scholar 

  27. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hevesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hevesi, P. et al. (2021). Towards Construction Progress Estimation Based on Images Captured on Site. In: Peñalver, L., Parra, L. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-71061-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71061-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71060-6

  • Online ISBN: 978-3-030-71061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics