Skip to main content

Beyond Anchors: Optimal Equality Constraints in Cooperative Localization

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2020)

Abstract

Although anchors are the most common in cooperative localizations, they are not the optimal in the class of equality constraints which provide the global reference information for deriving absolute locations. Using Cramér-Rao lower bound (CRLB) to evaluate the localization accuracy, this paper derives the optimal equality constraints that achieve the lowest CRLB trace under given constraint number, and analyzes the feasibility of constructing the optimal constraints before knowing the node ground truth locations. Simulations compare the performance between the anchor-type constraints and the optimal ones, and suggest a cooperative localization algorithm by using the optimal equality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadowski, S., Spachos, P.: RSSI-based indoor localization with the internet of things. IEEE Access 6, 30149–30161 (2018)

    Article  Google Scholar 

  2. Kim, H., Granström, K., Gao, L., Battistelli, G., Kim, S., Wymeersch, H.: 5G mmWave cooperative positioning and mapping using multi-model PHD filter and map fusion. IEEE Trans. Wirel. Commun. 19(6), 3782–3795 (2020)

    Article  Google Scholar 

  3. Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)

    Article  Google Scholar 

  4. Jawad, M., Azam, H., Siddiqi, S.J., Imtiaz-Ul-Haq, M., Ahmad, T.: Comparative analysis of localization schemes in conventional vs. next generation cellular networks. In: Proceedings of the 15th International Conference on Emerging Technologies (ICET 2019), pp. 1–6 (2019)

    Google Scholar 

  5. Zhang, P., Wang, Q.: On using the relative configuration to explore cooperative localization. IEEE Trans. Signal Process. 62(4), 968–980 (2014)

    Article  MathSciNet  Google Scholar 

  6. Zhang, P., Cao, A., Liu, T.: Bound analysis for anchor selection in cooperative localization. In: Chen, F., Luo, Y. (eds.) Industrial IoT 2017. LNICST, vol. 202, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60753-5_1

    Chapter  Google Scholar 

  7. Huang, J., Liang, J., Luo, S.: Method and analysis of TOA-based localization in 5G ultra-dense networks with randomly distributed nodes. IEEE Access 7, 174986–175002 (2019)

    Article  Google Scholar 

  8. Zhang, P., Yan, N., Zhang, J., Yuen, C.: Optimal minimally constrained system in cooperative localization. In: International Conference on Wireless Communications Signal Processing (WCSP 2015), pp. 1–5 (2015)

    Google Scholar 

  9. Patwari, N., Hero III, A.O., Perkins, M., Correal, N.S., O’Dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  10. Savvides, A., Garber, W., Adlakha, S., Moses, R., Srivastava, M.B.: On the error characteristics of multihop node localization in ad-hoc sensor networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 317–332. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36978-3_21

    Chapter  MATH  Google Scholar 

  11. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Proceedings of the IEEE Global Communication Conference, vol. 5, pp. 2926–2931 (2001)

    Google Scholar 

  12. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks: a quantitative comparison. Comput. Netw. 43(4), 499–518 (2003)

    Article  Google Scholar 

  13. Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sen. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  14. Chan, F.K.W., So, H.C.: Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Trans. Signal Process. 57(10), 4101–4105 (2009)

    Article  MathSciNet  Google Scholar 

  15. Sun, M., Ho, K.C.: Successive and asymptotically efficient localization of sensor nodes in closed-form. IEEE Trans. Signal Process. 57(11), 4522–4537 (2009)

    Article  MathSciNet  Google Scholar 

  16. Vemula, M., Bugallo, M.F., Djuric, P.M.: Sensor self-localization with beacon position uncertainty. Signal Process. 89(6), 1144–1154 (2009)

    Article  Google Scholar 

  17. Garcia, M., Martinez, C., Tomas, J., Lloret, J.: Wireless sensors self-location in an indoor WLAN environment. In: Proceedings of the 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp. 146–151 (2007)

    Google Scholar 

  18. Eren, T., et al.: Rigidity, computation, and randomization in network localization. In: Proceedings of the IEEE Conference on Computer Communication, vol. 4, pp. 2673–2684 (2004)

    Google Scholar 

  19. Bishop, A.N., Fidan, B.I., Anderson, B., Dogançay, K.I., Pathirana, P.N.: Optimality analysis of sensor-target localization geometries. Automatica 46, 479–492 (2010)

    Article  MathSciNet  Google Scholar 

  20. Huang, M., Chen, S., Wang, Y.: Minimum cost localization problem in wireless sensor networks. Ad Hoc Netw. 9(3), 387–399 (2011)

    Article  Google Scholar 

  21. Zhang, P., Wang, Q.: Anchor selection with anchor location uncertainty in wireless sensor network localization. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, pp. 4172–4175 (2011)

    Google Scholar 

  22. Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Anchor-free distributed localization in sensor networks. Technical report 892, MIT Laboratory for Computer Science (2003)

    Google Scholar 

  23. Ash, J.N., Moses, R.L.: On the relative and absolute positioning errors in self-localization systems. IEEE Trans. Signal Process. 56(11), 5668–5679 (2008)

    Article  MathSciNet  Google Scholar 

  24. Shang, Y., Rumi, W., Zhang, Y., Fromherz, M.: Localization from connectivity in sensor networks. IEEE Trans. Parallel Distrib. Syst. 15(11), 961–974 (2004)

    Article  Google Scholar 

  25. Yang, L., Ho, K.C.: On using multiple calibration emitters and their geometric effects for removing sensor position errors in TDOA localization. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, pp. 2702–2705 (2010)

    Google Scholar 

  26. Gorman, J.D., Hero, A.O.: Lower bounds for parametric estimation with constraints. IEEE Trans. Inform. Theory 36(6), 1285–1301 (1990)

    Article  MathSciNet  Google Scholar 

  27. Stoica, P., Ng, B.C.: On the Cramér-Rao bound under parametric constraints. IEEE Signal Process. Lett. 5(7), 177–179 (1998)

    Article  Google Scholar 

  28. Zhang, P., Lu, J., Wang, Q.: Performance bounds for relative configuration and global transformation in cooperative localization. ICT Express 2(1), 14–18 (2016). Special Issue on Positioning Techniques and Applications

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P., Cheng, F., Lu, J. (2021). Beyond Anchors: Optimal Equality Constraints in Cooperative Localization. In: Peñalver, L., Parra, L. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-71061-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71061-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71060-6

  • Online ISBN: 978-3-030-71061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics