Skip to main content

Deployment and Assessment of a LoRa Sensor Network in Camelina [Camelina sativa (L.) Crantz] Culture

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2020)

Abstract

The use of LoRa sensors and IoT in farming is increasing progressively. For this study, we installed a series of LoRa soil moisture and conductivity sensors at 5 cm and 30 cm depth in a Camelina sativa (L.) Crantz cultivar. The information gathered by the sensors show how rain or irrigation water infiltrates in the soil. This allows the farmer to take decisions regarding the use of water in a very effective, cheap and reliable way. Although the use of LoRa sensors is more common in irrigated crops of high economic value and yield, the use of cheap sensors in rainfed agriculture can be a great contribution to manage the crop and add additional value to the production. It could provide information on the water stress and needs of the crop and be decisive in assessing whether, in large areas of dry land, it will be economically profitable to cultivate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seneviratne, P.: Introduction to LoRa and LoRaWAN. In: Beginning LoRa Radio Networks with Arduino. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4357-2_1

  2. Stočes, M., Vaněk, J., Masner, J., Pavlík, J.: Internet of Things (IoT) in agriculture - selected aspects. Agris On-line Pap. Econ. Inform. 8, 83–88 (2016). https://doi.org/10.7160/aol.2016.080108

    Article  Google Scholar 

  3. Ji, M., Yoon, J., Choo, J., et al.: LoRa-based visual monitoring scheme for agriculture IoT. In: SAS 2019 - 2019 IEEE Sensors Applications Symposium Conference Proceedings, pp. 1–6 (2019). https://doi.org/10.1109/SAS.2019.8706100

  4. Ray, P.P.: Internet of things for smart agriculture: technologies, practices and future direction. J. Ambient Intell. Smart Environ. 9, 395–420 (2017). https://doi.org/10.3233/AIS-170440

    Article  Google Scholar 

  5. Gluhak, A., Krco, S., Nati, M., et al.: A survey on facilities for experimental internet of things research. IEEE Commun. Mag. 49, 58–67 (2011). https://doi.org/10.1109/MCOM.2011.6069710

    Article  Google Scholar 

  6. Jazayeri, M., Liang, S., Huang, C.-Y.: Implementation and evaluation of four interoperable open standards for the Internet of Things. Sensors 15, 24343–24373 (2015). https://doi.org/10.3390/s150924343

    Article  Google Scholar 

  7. Heble, S., Kumar, A., Prasad, K.V.V.D., et al.: A low power IoT network for smart agriculture. In: IEEE World Forum Internet Things, WF-IoT 2018 – Proceedings, January 2018, pp. 609–614 (2018). https://doi.org/10.1109/WF-IoT.2018.8355152

  8. Mekala, M.S., Viswanathan, P.: A survey: smart agriculture IoT with cloud computing. In: International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS), pp. pp. 1–7. IEEE (2017)

    Google Scholar 

  9. Nguyen Gia, T., Qingqing, L., Peña Queralta, J., et al.: Edge AI in smart farming IoT: CNNs at the edge and fog computing with LoRa. In: IEEE AFRICON-2019 (2019)

    Google Scholar 

  10. Imbrea, F., Jurcoane, S., Hǎlmǎjan, H.V., et al.: Camelina sativa: a new source of vegetal oils. Rom. Biotechnol. Lett. 16, 6263–6270 (2011)

    Google Scholar 

  11. Zubr, J.: Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6, 113–119 (1997). https://doi.org/10.1016/S0926-6690(96)00203-8

    Article  Google Scholar 

  12. Berti, M., Wilckens, R., Fischer, S., et al.: Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crops Prod. 34, 1358–1365 (2011). https://doi.org/10.1016/j.indcrop.2010.12.008

    Article  Google Scholar 

  13. Pilgeram, A.L., Sands, D.C., Boss, D., et al.: Camelina sativa, A Montana Omega-3 and Fuel Crop. In: Proceedings Sixth National Symposium Creating Markets for Economic Development of New Crops and New Uses, pp. 129–131 (2007)

    Google Scholar 

  14. Usher, S., Haslam, R.P., Ruiz-Lopez, N., et al.: Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: making fish oil substitutes in plants. Metab. Eng. Commun. 2, 93–98 (2015). https://doi.org/10.1016/j.meteno.2015.04.002

    Article  Google Scholar 

  15. Zanetti, F., Eynck, C., Christou, M., et al.: Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 107, 602–608 (2017). https://doi.org/10.1016/j.indcrop.2017.06.022

    Article  Google Scholar 

  16. Zanetti, F., Monti, A., Berti, M.T.: Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Ind. Crops Prod. 50, 580–595 (2013). https://doi.org/10.1016/j.indcrop.2013.08.030

    Article  Google Scholar 

  17. Dobre, P., Jurcoane, Ş.T.: Camelina crop - opportunities for a sustainable agriculture. Scientific Papers, UASVM Bucharest LIV, pp. 420–424 (2011)

    Google Scholar 

  18. Guy, S.O., Wysocki, D.J., Schillinger, W.F., et al.: Camelina: adaptation and performance of genotypes. Field Crop Res. 155, 224–232 (2014). https://doi.org/10.1016/j.fcr.2013.09.002

    Article  Google Scholar 

  19. de Imperial, M., Hornedo, R., Martín Sánchez, J.V., Lobo Bedmar, M. del C., et al.: Respuesta del rendimiento biológico y agrícola de plantas de Camelina (Camelina sativa) y del contenido de proteína y aceite de sus granos al afecto residual de la fertilización orgánica y mineral. Rev Int Contam Ambient 31, 377–387 (2015)

    Google Scholar 

  20. del Mar Delgado, M. Lobo, C., Plaza, A., et al.: Efecto residual provocado por dos lodos de depuradora procedentes de un ensayo de fitorremediación con cardo en un cultivo de camelina (Camelina sativa (L.) Crantz) en Madrid. Rev la Fac Ciencias Agrar 48, 13–30 (2016)

    Google Scholar 

  21. Moore, A., Wysocki, D., Chastain, T., et al.: Camelina Nutrient Management Guide for the Pacific Northwest. Pacific Northwest Ext (2019)

    Google Scholar 

  22. McVay, K.A., Lamb, P.F.: Camelina Production in Montana (Report). Bull MT200701AG 8 (2008)

    Google Scholar 

  23. Parra, M., Parra, L., Mostaza-Colado, D., et al.: Using satellite imagery and vegetation indices to monitor and quantify the performance of different varieties of Camelina Sativa. In: GEOProcessing 2020: The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services Using, pp 42–47 (2020)

    Google Scholar 

  24. Mostaza-Colado, D., Mauri Ablanque, P.V., Capuano, A.: Assessing the yield of a multi-varieties crop of Camelina sativa (L.) Crantz through NDVI remote sensing. In: 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 596–602. IEEE (2019)

    Google Scholar 

  25. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018). https://doi.org/10.1016/j.adhoc.2018.07.017

    Article  Google Scholar 

  26. García, L., Parra, L., Jimenez, J.M., et al.: IoT-based smart irrigation systems: an overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors (Switzerland) 20 (2020). https://doi.org/10.3390/s20041042

  27. Triantafyllou, A., Sarigiannidis, P., Bibi, S.: Precision agriculture: a remote sensing monitoring system architecture. Information 10 (2019). https://doi.org/10.3390/info10110348

  28. Gsangaya, K.R., Hajjaj, S.S.H., Sultan, M.T.H., Hua, L.S.: Portable, wireless, and effective internet of things-based sensors for precision agriculture. Int. J. Environ. Sci. Technol. 17(9), 3901–3916 (2020). https://doi.org/10.1007/s13762-020-02737-6

    Article  Google Scholar 

Download references

Acknowledgements

PDR18-CAMEVAR project is co-founded by the European Union through the European Agricultural Fund for Rural Development (EAFRD) - Europe invests in rural areas, MAPAMA and the Community of Madrid through IMIDRA, within the framework of the PDR-CM 2014–2020 call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mostaza-Colado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mostaza-Colado, D., Mauri Ablanque, P.V., Capuano, A. (2021). Deployment and Assessment of a LoRa Sensor Network in Camelina [Camelina sativa (L.) Crantz] Culture. In: Peñalver, L., Parra, L. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-71061-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71061-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71060-6

  • Online ISBN: 978-3-030-71061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics