Skip to main content

Crowd Anomaly Detection Based on Elevator Internet of Things Technology

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2020)

Abstract

A work-flow which aims at capturing residents’ abnormal activities through the passenger flow of elevator in multi-storey residence buildings is presented in this paper. Firstly, sensors (hall sensor, photoelectric sensor, gyro, accelerometer, barometer, and thermometer) connected with internet are mounted in elevator to collect image and data. Then computer vision algorithms such as instance segmentation, multi-label recognition, embedding and clustering are applied to generalize passenger flow of elevator, i.e. how many people and what kinds of people get in and out of the elevator on each floor. More specifically so-called GraftNet is proposed for fine-grained multi-label recognition task to recognize human attributes (e.g. gender, age, appearance, and occupation). Thirdly, based on the passenger flow data, anomaly detection of unsupervised learning is hierarchically applied to detect abnormal or even illegal activities of the residents. Meanwhile, based on manual reviewed data, Catboost algorithm is implemented for multi-classification task. Experiment shows the work-flow proposed in this paper can detect the anomaly and classify different categories well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pan.baidu.com/s/10Cty8nJcpbp9B0_oGXjPww, extraction code: llqi.

References

  1. Hanapi, N.L., Sh Ahmad, S., Ibrahim, N., Razak, A.A., Ali, N.M.: Suitability of escape route design for elderly residents of public multi-storey residential building. Pertanika J. Soc. Sci. Humanit. 25(s)(2017), 251–258 (2017)

    Google Scholar 

  2. Yan-Bin, W.: Creating effective mechanism of management of urban residential community. J. Yuxi Teachers Coll. 40–43 (2002)

    Google Scholar 

  3. Aitor, A., Gorka, A.: Predicting human behaviour with recurrent neural networks. Appl. Sci. 8(2), 305 (2018)

    Article  Google Scholar 

  4. Hartford, J., Wright, J.R., Leyton-Brown, K.: Deep learning for predicting human strategic behavior. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 2432–2440. Curran Associates Inc., Red Hook (2016)

    Google Scholar 

  5. Luceri, L., Braun, T., Giordano, S.: Analyzing and inferring human real-life behavior through online social networks with social influence deep learning. Appl. Netw. Sci. 4(1), 1–25 (2019). https://doi.org/10.1007/s41109-019-0134-3

    Article  Google Scholar 

  6. Phan, N., Dou, D., Wang, H., Kil, D., Piniewski, B.: Ontology-based deep learning for human behavior prediction with explanations in health social networks. Inf. Sci. 384, 298–313 (2017)

    Article  Google Scholar 

  7. Zihan, M., Shaoyi, H., Zhanbin, Z., Shuang, X.: Elevator safety monitoring system based on internet of things. Int. J. Online Eng. (iJOE) 14(08), 121 (2018)

    Article  Google Scholar 

  8. Yi-Ping, T., Hai-Feng, L.U.: Intelligent anti-violence surveillance system in elevator based on computer vision. J. Zhejiang Univ. Technol. 6, 591–597 (2009)

    Google Scholar 

  9. Gui-Xiong, L., Hai-Bing, Z., Ruo-Quan, H.E., Yu-Hui, K.E.: Design of elevator real-time energy efficiency recorder and system. China Measurement & Test (2012)

    Google Scholar 

  10. Dollar, P.: Pedestrian detection: a benchmark. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 304–311 (2009)

    Google Scholar 

  11. Zhou, Y., Wang, K., Liu, H.: An elevator monitoring system based on the internet of things. Procedia Comput. Sci. 131, 541–544 (2018)

    Article  Google Scholar 

  12. Li, J., Luo, C., Xu, Z.: A novel timing synchronization metric for low-voltage OFDM powerline communication system. In: Power & Energy Engineering Conference (2012)

    Google Scholar 

  13. Bolya, D., Zhou, C., Xiao, F., Yong, J.L.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2019) (2020)

    Google Scholar 

  14. Kaiming, H., Georgia, G., Piotr, D., Ross, G.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. PP, 1 (2017)

    Google Scholar 

  15. White, T.: Hadoop: The Definitive Guide. O’reilly Media Inc., Sebastopol (2012). 215(11): 1–4

    Google Scholar 

  16. Acuña, P.: Kubernetes (2016)

    Google Scholar 

  17. Duong, T.V.: Activity recognition and abnormality detection with the switching hidden semi-Markov models. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer (2005)

    Google Scholar 

  18. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. 34(3), 334–352 (1986)

    Article  Google Scholar 

  19. Räty, T.D.: Survey on contemporary remote surveillance systems for public safety. IEEE Trans. Syst. Man Cybern. Part C 40(5), 493–515 (2010)

    Article  Google Scholar 

  20. Xiang, T., Gong, S.: Video behavior profiling for anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 893–908 (2008)

    Article  Google Scholar 

  21. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 255–272 (2000)

    Article  Google Scholar 

  22. Loy, C.C., Gong, X.S.: Time-delayed correlation analysis for multi-camera activity understanding. Int. J. Comput. Vision 90, 106–129 (2010)

    Article  Google Scholar 

  23. Gong, S., Xiang, T.: Recognition of group activities using dynamic probabilistic networks. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  24. Davis, J.W., Sharma, V., Tyagi, A., Keck, M.: Human detection and tracking. In: Li, S.Z., Jain, A. (eds.) Encyclopedia of Biometrics, pp. 882–887. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5_35

    Chapter  Google Scholar 

  25. Sodemann, A.A., Ross, M.P., Borghetti, B.J.: A review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man Cybern. Part C 42(6), 1257–1272 (2012)

    Article  Google Scholar 

  26. Kalinichenko, L.A., Shanin, I., Taraban, I.: Methods for anomaly detection: a survey. In: Proceedings of the 16th Russian Conference on Digital Libraries RCDL 2014, CEUR Workshop Proceedings (CEUR-WS.org), vol. 1297, pp. 20–25. ceur-ws.org (2014)

    Google Scholar 

  27. Angiulli, F., Basta, S., Pizzuti, C.: Distance-based detection and prediction of outliers. IEEE Trans. Knowl. Data Eng. 18(2), 145–160 (2005)

    Article  Google Scholar 

  28. Idé, T., Lozano, A.C., Abe, N., Liu, Y.: Proximity-based anomaly detection using sparse structure learning. In: Proceedings of the SIAM International Conference on Data Mining, SDM, 30 April 2009–2 May 2009, Sparks, Nevada, USA, p. 2009 (2009)

    Google Scholar 

  29. Akouemo, H.N., Povinelli, R.J.: Probabilistic anomaly detection in natural gas time series data. Int. J. Forecast. 32(3), 948–956 (2016)

    Article  Google Scholar 

  30. Xiong, L., Póczos, B., Schneider, J.G., Connolly, A., Vanderplas, J.: Hierarchical probabilistic models for group anomaly detection. J. Mach. Learn. Res. 15, 789–797 (2011)

    Google Scholar 

  31. Niu, Z., Yu, K., Wu, X.: LSTM-based VAE-GAN for time-series anomaly detection. Sensors 20(13), 3738 (2020)

    Article  Google Scholar 

  32. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. Acm Trans. Knowl. Discovery Data 6(1), 1–39 (2012)

    Article  Google Scholar 

  33. Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019)

    Google Scholar 

  34. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering (2015)

    Google Scholar 

  35. Song, H., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016)

    Google Scholar 

  36. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, C., Yi, W., Wu, Y., Li, Z., Zhu, S., Wu, L. (2021). Crowd Anomaly Detection Based on Elevator Internet of Things Technology. In: Peñalver, L., Parra, L. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-71061-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71061-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71060-6

  • Online ISBN: 978-3-030-71061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics