Skip to main content

Automatic Framework for Patient-Specific Biomechanical Computations of Organ Deformation

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Our motivation is to enable non-specialists to use sophisticated biomechanical models in the clinic. To further this goal, in this study, we constructed a framework within 3D Slicer for automatically generating and solving patient-specific biomechanical models of the brain. This framework allows determining automatically patient-specific geometry from MRI data, generating patient-specific computational grid, defining boundary conditions and external loads, assigning material properties to intracranial constituents and solving the resulting set of differential equations. We used Meshless Total Lagrangian Explicit Dynamics Method (MTLED) to solve these equations. We demonstrated the effectiveness and appropriateness of our framework on a case study of craniotomy-induced brain shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences 10(2‚Äì3), 191–203.

    Google Scholar 

  2. Chowdhury, H., Joldes, G., Wittek, A., Doyle, B., Pasternak, E., & Miller, K. (2015). Implementation of a modified moving least squares approximation for predicting soft tissue deformation using a meshless method. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P. M. F. (Eds.), Computational biomechanics for medicine (pp. 59–71). Springer.

    Google Scholar 

  3. Ciarlet, P. G. (1988). Mathematical elasticity. The Netherlands: North Hollad.

    MATH  Google Scholar 

  4. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.

    Article  Google Scholar 

  5. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). State-of-the-art methods for brain tissue segmentation: A review. IEEE Reviews in Biomedical Engineering, 10, 235–249.

    Article  Google Scholar 

  6. Fedorov, A., Beichel, R., Kalpathy Cramer, J., Finet, J., Fillion Robin, J.-C., Pujol, S., et al. (2012). 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341.

    Article  Google Scholar 

  7. Garlapati, R. R., Aditi, R., Joldes, G. R., Wittek, A., Mostayed, A., Doyle, B., Warfield, S. K., Kikinis, R., Knuckey, N., Bunt, S., & Miller, K. (2013). Biomechanical modeling provides more accurate data for neuronavigation than rigid registration. Journal of Neurosurgery. Accepted for publication on 4th October, 2013.

    Google Scholar 

  8. Geuzaine, C., & Remacle, J. F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331.

    Article  ADS  MathSciNet  Google Scholar 

  9. Horton, A., Wittek, A., Joldes, G. R., & Miller, K. (2010). A meshless total lagrangian explicit dynamics algorithm for surgical simulation. International Journal for Numerical Methods in Biomedical Engineering, 26, 977–998.

    Article  Google Scholar 

  10. Jin, X., Joldes, G. R., Miller, K., Yang, K. H., & Wittek, A. (2014). Meshless algorithm for soft tissue cutting in surgical simulation. Computer Methods in Biomechanics and Biomedical Engineering, 17, 800–817.

    Article  Google Scholar 

  11. Joldes, G., Bourantas, G., Zwick, B., Chowdhury, H., Wittek, A., Agrawal, S., et al. (2019). Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 56, 152–171.

    Article  Google Scholar 

  12. Joldes, G. R., Wittek, A., & Miller, K. (2009). Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 13(6), 912–919.

    Article  Google Scholar 

  13. Joldes, G. R., Wittek, A., & Miller, K. (2011). An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. International Journal for Numerical Methods in Biomedical Engineering, 27(2), 173–185.

    Article  MathSciNet  Google Scholar 

  14. Joldes, G. R., Wittek, A., Miller, K., & Morriss, L. (2008). Realistic and efficient brain-skull interaction model for brain shift computation. In: K. Miller and P. M. F. Nielsen, Computational Biomechanics for Medicine III Workshop, Miccai, pp. 95–105. New York.

    Google Scholar 

  15. Joldes, G. R., Wittek, A., Warfield, S. K., & Miller, K. (2012). Performing brain image warping using the deformation field predicted by a biomechanical model. In: Computational Biomechanics for Medicine (pp. 89–96). Springer.

    Google Scholar 

  16. Li, M., A. Wittek, G. R. Joldes and K. Miller (2016). Fuzzy Tissue Classification for Non-Linear Patient-Specific Biomechanical Models for Whole-Body Image Registration. Computational Biomechanics for Medicine: Imaging, Modeling and Computing. G. R. Joldes, B. Doyle, A. Wittek, P. M. F. Nielsen and K. Miller. Cham, Springer International Publishing: 85–96.

    Google Scholar 

  17. Lorensen, W. E. H. E. C. (1987). Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21 (Association for Computing Machinery), pp. 163–169.

    Google Scholar 

  18. Miga, M. I., Sun, K., Chen, I., Clements, L. W., Pheiffer, T. S., Simpson, A. L., et al. (2016). Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. International Journal of Computer Assisted Radiology and Surgery, 11(8), 1467–1474.

    Article  Google Scholar 

  19. Miller, K., Chinzei, K., Orssengo, G., & Bednarz, P. (2000). Mechanical properties of brain tissue in-vivo: Experiment and computer simulation. Journal of Biomechanics, 33, 1369–1376.

    Article  Google Scholar 

  20. Miller, K., Horton, A., Joldes, G. R., & Wittek, A. (2012). Beyond finite elements: A comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. Journal of Biomechanics, 45(15), 2698–2701.

    Article  Google Scholar 

  21. Miller, K., & Lu, J. (2013). On the prospect of patient-specific biomechanics without patient-specific properties of tissues. Journal of the Mechanical Behavior of Biomedical Materials, 27, 154–166.

    Article  Google Scholar 

  22. Miller, K., Wittek, A., & Joldes, G. (2011). Biomechanical modeling of the brain for computer-assisted neurosurgery (pp. 111–136). Springer, New York: Biomechanics of the Brain.

    Google Scholar 

  23. Mostayed, A., Garlapati, R., Joldes, G., Wittek, A., Roy, A., Kikinis, R., et al. (2013). Biomechanical model as a registration tool for image-guided neurosurgery: Evaluation against BSpline registration. Annals of Biomedical Engineering, 41(11), 2409–2425.

    Article  Google Scholar 

  24. Neal, M. L., & Kerckhoffs, R. (2010). Current progress in patient-specific modeling. Briefings in Bioinformatics, 11, 15.

    Article  Google Scholar 

  25. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  26. Pruthi, S., Dawant, B., & Parker, S. L. Initial experience with using a structured light 3D scanner and image registration to plan bedside subdural evacuating port system placement.

    Google Scholar 

  27. Valette, S., Chassery, J. M., & Prost, R. (2008). Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics, 14(2), 369–381.

    Article  Google Scholar 

  28. Wittek, A., Grosland, N., Joldes, G., Magnotta, V., & Miller, K. (2016). From finite element meshes to clouds of points: A review of methods for generation of computational biomechanics models for patient-specific applications. Annals of Biomedical Engineering, 44(1), 3–15.

    Article  Google Scholar 

  29. Wittek, A., Hawkins, T., & Miller, K. (2009). On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomechanics and Modeling in Mechanobiology, 8, 77–84.

    Article  Google Scholar 

  30. Wittek, A., Joldes, G., Couton, M., Warfield, S. K., & Miller, K. (2010). Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; Application to non-rigid neuroimage registration. Progress in Biophysics and Molecular Biology, 103, 292–303.

    Article  Google Scholar 

  31. Wittek, A., Miller, K., Kikinis, R., & Warfield, S. K. (2007). Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics, 40, 919–929.

    Article  Google Scholar 

  32. Zhang, J. Y., Joldes, G. R., Wittek, A., & Miller, K. (2013). Patient-specific computational biomechanics of the brain without segmentation and meshing. International Journal for Numerical Methods in Biomedical Engineering, 29(2), 293–308.

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y. J., Joldes, G. R., Wittek, A., & Miller, K. (2013). Patient-specific computational biomechanics of the brain without segmentation and meshing. International Journal for Numerical Methods in Biomedical Engineering, 29(2), 16.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The funding from NHMRC grants APP1162030; APP1144519 is gratefully acknowledged. The first author acknowledges scholarship funding from University Postgraduate Award. We also wish to thank 3D Slicer on-line community https://discourse.slicer.org/ whose members have made many valuable contributions. Our special thanks go to Dr Andras Lasso of Laboratory for Percutaneous Surgery (PerkLab) at Queen's University (Kingston, Ontario, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Safdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Safdar, S. et al. (2021). Automatic Framework for Patient-Specific Biomechanical Computations of Organ Deformation. In: Miller, K., Wittek, A., Nash, M., Nielsen, P.M.F. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-70123-9_1

Download citation

Publish with us

Policies and ethics