Skip to main content

LPWAN Technologies

  • Chapter
  • First Online:
Fundamentals of IoT Communication Technologies

Part of the book series: Textbooks in Telecommunication Engineering ((TTE))

Abstract

A great deal of IoT solutions require low-power long-range coverage that is not typically supported in most WPAN deployments. LPWAN technologies address this need by providing proprietary mechanisms that can integrate with core IP networks to provide hybrid IoT solutions. This chapter explores a wide range of standards that include LoRa, SigFox, D7AP, and Weightless. NB-IoT and other relevant mobile IoT technologies including latest development associated with 5G are detailed. In general, these technologies are presented from a performance and security perspective including a description of their stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal area networks (LR-WPANS) amendment 3: Physical layer (PHY) specifications for low-data-rate, wireless, smart metering utility networks. IEEE Std 802.15.4g-2012 (Amendment to IEEE Std 802.15.4-2011) pp. 1–252 (2012)

    Google Scholar 

  2. IEEE standard for local and metropolitan area networks—part 15.4: Low-rate wireless personal area networks (LR-WPANS)-amendment 5: Physical layer specifications for low energy, critical infrastructure monitoring networks. IEEE Std 802.15.4k-2013 (Amendment to IEEE Std 802.15.4-2011 as amended by IEEE Std 802.15.4e-2012, IEEE Std 802.15.4f-2012, IEEE Std 802.15.4g-2012, and IEEE Std 802.15.4j-2013) pp. 1–149 (2013)

    Google Scholar 

  3. 3GPP: 3GPP release 13 (2015). https://www.3gpp.org/release-13

  4. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)

    Article  Google Scholar 

  5. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (IoT) communication protocols: Review. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690 (2017)

    Google Scholar 

  6. Alliance, L.: Lorawan 1.1 specification (2017). https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf

  7. Augustin, A., Yi, J., Clausen, T., Townsley, W.M.: A study of lora: Long range & low power networks for the internet of things. Sensors 16(9), 1466 (2016). https://doi.org/10.3390/s16091466. https://pubmed.ncbi.nlm.nih.gov/27618064. 27618064[pmid]

  8. Ayoub, W., Nouvel, F., Samhat, A.E., Prévotet, J.C., Mroue, M.: Overview and measurement of mobility in DASH7. In: 2018 25th International Conference on Telecommunications (ICT), pp. 532–536. IEEE, St. Malo (2018). https://doi.org/10.1109/ICT.2018.8464846. https://hal.archives-ouvertes.fr/hal-01991725

  9. Ayoub, W., Samhat, A.E., Nouvel, F., Mroue, M., Prevotet, J.: Internet of mobile things: overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and supported mobility. IEEE Commun. Surv. Tutor. 21(2), 1561–1581 (2019)

    Article  Google Scholar 

  10. Calvo, I., Gil-Garcia, J., Recio, I., Lopez, A., Quesada, J.: Building IoT applications with raspberry Pi and low power IQRF communication modules. Electronics 5, 54 (2016). https://doi.org/10.3390/electronics5030054

    Article  Google Scholar 

  11. Chaudhari, B., Zennaro, M., Borkar, S.: LPWAN technologies: emerging application characteristics, requirements, and design considerations. Future Internet 12, 46 (2020). https://doi.org/10.3390/fi12030046

    Article  Google Scholar 

  12. Chen, M., Miao, Y., Hao, Y., Hwang, K.: Narrow band internet of things. IEEE Access 5, 20557–20577 (2017)

    Article  Google Scholar 

  13. Farrell, S.: Low-Power Wide Area Network (LPWAN) Overview. RFC 8376 (2018). https://doi.org/10.17487/RFC8376. https://rfc-editor.org/rfc/rfc8376.txt

  14. Ferré, G., Simon, E.P.: An introduction to Sigfox and LoRa PHY and MAC layers (2018). https://hal.archives-ouvertes.fr/hal-01774080. Working paper or preprint

  15. Finnegan, J., Brown, S.: A Comparative Survey of LPWA Networking. arXiv (2018), arXiv:1802.04222

    Google Scholar 

  16. Foubert, B., Mitton, N.: Long-range wireless radio technologies: a survey. Future Internet 12, 13 (2020). https://doi.org/10.3390/fi12010013

    Article  Google Scholar 

  17. Harada, H., Mizutani, K., Fujiwara, J., Mochizuki, K., Obata, K., Okumura, R.: IEEE 802.15.4g based wi-sun communication systems. IEICE Trans. Commun. E100.B, 1032–1043 (2017). https://doi.org/10.1587/transcom.2016SCI0002

  18. Lavric, A., Popa, V.: Internet of things and lora low-power wide-area networks: A survey. In: 2017 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–5 (2017)

    Google Scholar 

  19. Malik, H., Sarmiento, J.L.R., Alam, M.M., Imran, M.A.: Narrowband-internet of things (NB-IoT ): Performance evaluation in 5G heterogeneous wireless networks. In: 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6 (2019)

    Google Scholar 

  20. Minaburo, A., Toutain, L., Gomez, C., Barthel, D., Zuniga, J.C.: SCHC: Generic Framework for Static Context Header Compression and Fragmentation. RFC 8724 (2020). https://doi.org/10.17487/RFC8724. https://rfc-editor.org/rfc/rfc8724.txt

  21. Morin, E., Maman, M., Guizzetti, R., Duda, A.: Comparison of the device lifetime in wireless networks for the internet of things. IEEE Access 5, 7097–7114 (2017). https://doi.org/10.1109/ACCESS.2017.2688279.https://hal.archives-ouvertes.fr/hal-01649135

    Article  Google Scholar 

  22. Mroue, H., Nasser, A., Hamrioui, S.: Mac layer-based evaluation of IoT technologies: Lora, sigfox and NB-IoT. In: IEEE Middle East and North Africa Communications Conference (MENACOMM) (2018). https://doi.org/10.1109/MENACOMM.2018.8371016

  23. Naik, N.: LPWAN technologies for IoT systems: Choice between ultra narrow band and spread spectrum. In: 2018 IEEE International Systems Engineering Symposium (ISSE), pp. 1–8 (2018)

    Google Scholar 

  24. Oliveira, L., Rodrigues, J., Kozlov, S., Rabelo, R., Albuquerque, V.: Mac layer protocols for internet of things: a survey. Future Internet 11, 16 (2019). https://doi.org/10.3390/fi11010016

    Article  Google Scholar 

  25. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 19, 855–873 (2016)

    Article  Google Scholar 

  26. Righetti, F., Vallati, C., Comola, D., Anastasi, G.: Performance measurements of IEEE 802.15.4g wireless networks. In: 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 1–6 (2019)

    Google Scholar 

  27. Roth, Y., Dore, J.B., Ros, L., Berg, V.: A comparison of physical layers for low power wide area networks. In: Cognitive Radio Oriented Wireless Networks. CrownCom 2016, pp. 261–272 (2016). https://doi.org/10.1007/978-3-319-40352-6_21

    Google Scholar 

  28. Saari, M., bin Baharudin, A.M., Sillberg, P., Hyrynsalmi, S., Yan, W.: Lora-a survey of recent research trends. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0872–0877 (2018)

    Google Scholar 

  29. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Chandra, R., Liu, J.: Snow: Sensor network over white spaces. In: SenSys ’16: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pp. 272–285 (2016). https://doi.org/10.1145/2994551.2994552

  30. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Liu, J., Chandra, R.: Enabling reliable, asynchronous, and bidirectional communication in sensor networks over white spaces. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, SenSys ’17. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3131672.3131676

  31. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Liu, J., Chandra, R.: Low-power wide-area network over white spaces. IEEE/ACM Trans. Netw. 26(4), 1893–1906 (2018). https://doi.org/10.1109/TNET.2018.2856197

    Article  Google Scholar 

  32. Salva, P., Alcaraz-Calero, J., Wang, Q., Bernal Bernabe, J., Skarmeta, A.: 5g NB-IoT: Efficient network traffic filtering for multitenant IoT cellular networks. Secur. Commun. Netw. 2018, 1–21 (2018). https://doi.org/10.1155/2018/9291506

    Article  Google Scholar 

  33. Shanmuga Sundaram, J.P., Du, W., Zhao, Z.: A survey on lora networking: research problems, current solutions, and open issues. IEEE Commun. Surv. Tutor. 22(1), 371–388 (2020)

    Article  Google Scholar 

  34. Silva, P., Kaseva, V., Lohan, E.S.: Wireless positioning in IoT: a look at current and future trends. Sensors 18, 2470 (2018). https://doi.org/10.3390/s18082470

    Article  Google Scholar 

  35. Walden, M.C., Jackson, T., Gibson, W.H.: Development of an empirical path-loss model for street-light telemetry at 868 and 915 MHz. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 3389–3392 (2011)

    Google Scholar 

  36. Webb, W.: Weightless: the technology to finally realise the m2m vision. Int. J. Interdiscip. Telecommun. Netw. 4, 30–37 (2012). https://doi.org/10.4018/jitn.2012040102

    Google Scholar 

  37. Weyn, M., Ergeerts, G., Berkvens, R., Wojciechowski, B., Tabakov, Y.: Dash7 alliance protocol 1.0: Low-power, mid-range sensor and actuator communication. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrero, R. (2022). LPWAN Technologies. In: Fundamentals of IoT Communication Technologies. Textbooks in Telecommunication Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-70080-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70080-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70079-9

  • Online ISBN: 978-3-030-70080-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics