Skip to main content

Exercise-Induced Laryngeal Obstruction (EILO) in Athletes

  • Chapter
  • First Online:
Voice Disorders in Athletes, Coaches and other Sports Professionals

Abstract

Exercise-induced laryngeal obstruction (EILO) occurs primarily in athletes following exercise and is characterized by intermittent dyspnea and stridor associated with vocal fold adduction. Voice changes are common in patients with EILO mostly due to phonotrauma and increased collision forces between the vocal folds. As a result, there is formation of nodules, polyps, granuloma, and/or ulceration in 11–25% of the cases. EILO is diagnosed best using provocative maneuvers with continuous laryngoscopy. Spirometry shows evidence of extra-thoracic obstruction with truncation of the inspiratory phase of flow-volume loop. In the absence of asthma, the methacholine challenge test is usually negative, and affected patients rarely respond to anti-asthmatic medications. Laryngeal electromyography also is useful in diagnosing EILO and in differentiating between its various etiology, namely, respiratory dystonia vs. psychogenic causes vs. laryngopharyngeal reflux disease.

Several pathophysiologic mechanisms for EILO are suggested. These include mechanical factors, laryngeal hypersensitivity, psychogenic predisposition, autonomic nervous system dysfunction, excessive laryngeal tension, respiratory dystonia, and/or laryngopharyngeal reflux disease. The diversity in the pathophysiology of EILO alludes to the need for individualized treatment after improving patients’ education about the nature of their condition. The basic treatment options are voice therapy focused on abdominal and nasal breathing, cognitive therapy with visual feedback for enhancement of laryngeal muscle control, botulinum toxin therapy, reflux therapy, psychotherapy, and hypnosis. The treatment must be comprehensive and guided toward the patient’s unique condition.

This chapter reviews the prevalence of EILO in athletes, its pathophysiology, and its management. The authors discuss the associated comorbidities of EILO, such as asthma and exercise-induced asthma, and stress the multifaceted nature of this condition and the management of affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson RO, Schatz HM. Munchausen’s stridor: non‐organic laryngeal obstruction. Clin Allergy. 1974;4(3):307–10.

    Article  CAS  PubMed  Google Scholar 

  2. Christopher KL, Wood RPII, Eckert RC, Blager FB, Raney RA, Souhadrada JF. Vocal-cord dysfunction presenting as asthma. N Engl J Med. 1983;308:1566–70.

    Article  CAS  PubMed  Google Scholar 

  3. Olin JT, Clary MS, Deardorff EH, et al. Inducible laryngeal obstruction during exercise: moving beyond vocal cords with new insights. Phys Sportsmed. 2015;43(1):13–21.

    Article  PubMed  Google Scholar 

  4. Christensen PM, Heimdal JH, Christopher KL, et al. ERS/ELS/ACCP 2013 international consensus conference nomenclature on inducible laryngeal obstructions. Eur Respir Rev. 2015;24(137): 445–50.

    Google Scholar 

  5. Lakin RC, Metzger WJ, Haughey BH. Upper airway obstruction presenting as exercise-induced asthma. Chest. 1984;86:499–501.

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen EW, Hull JH, Backer V. High prevalence of exercise-induced laryngeal obstruction in athletes. Med Sci Sports Exerc. 2013;45(11):2030–5.

    Article  PubMed  Google Scholar 

  7. Rundell KW, Spiering BA. Inspiratory stridor in elite athletes. Chest. 2003;123(2):468–74.

    Article  PubMed  Google Scholar 

  8. Mikita J, Parker J. High levels of medical utilization by ambulatory patients with vocal cord dysfunction as compared to age- and gender-matched asthmatics. Chest. 2006;129:905–8.

    Article  PubMed  Google Scholar 

  9. Liao KS, Kwak PE, Hewitt H, Hollas S, Ongkasuwan J. Measuring quality of life in pediatric paradoxical vocal fold motion using the SF-36v2. J Voice. 2017;31(4):518.e1–5.

    Article  Google Scholar 

  10. Morris MJ, Christopher KL. Diagnostic criteria for the classification of vocal cord dysfunction. Chest. 2010;138:1213–23.

    Article  PubMed  Google Scholar 

  11. Chiang T, Marcinow AM, deSilva BW, Ence BN, Lindsey SE, Forrest LA. Exercise-induced paradoxical vocal fold motion disorder: diagnosis and management. Laryngoscope. 2013;123:727–31.

    Article  PubMed  Google Scholar 

  12. Marcinow AM, Thompson J, Chiang T, Forrest LA, deSilva BW. Paradoxical vocal fold motion disorder in the elite athlete: experience at a large division I university. Laryngoscope. 2014;124(6):1425–30.

    Article  PubMed  Google Scholar 

  13. Al-Alwan A, Kaminsky D. Vocal cord dysfunction in athletes: clinical presentation and review of the literature. Phys Sportsmed. 2012;40:22–7.

    Article  PubMed  Google Scholar 

  14. Powell DM, Karanfilov BI, Beechler KB, Treole K, Trudeau MD, Forrest LA. Paradoxical vocal cord dysfunction in juveniles. Arch Otolaryngol Head Neck Surg. 2000;126(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  15. Tervonen H, Niskanen MM, Sovijarvi AR, Hakulinen AS, Vilkman EA, Aaltonen LM. Fiberoptic videolaryngoscopy during bicycle ergometry: a diagnostic tool for exercise-induced vocal cord dysfunction. Laryngoscope. 2009;119:1776–80.

    Article  PubMed  Google Scholar 

  16. Heimdal JH, Roksund OD, Halvorsen T, Skadberg BT, Olofsson J. Continuous laryngoscopy exercise test: a method for visualizing laryngeal dysfunction during exercise. Laryngoscope. 2006;116:52–7.

    Article  PubMed  Google Scholar 

  17. Christensen P, Thomsen SF, Rasmussen N, Backer V. Exercise-induced laryngeal obstructions objectively assessed using EILOMEA. Eur Arch Otorhinolaryngol. 2010;267(3):401–7.

    Article  PubMed  Google Scholar 

  18. Olin JT, Clary MS, Fan EM, et al. Continuous laryngoscopy quantitates laryngeal behaviour in exercise and recovery. Eur Respir J. 2016;48:1192–200.

    Article  PubMed  Google Scholar 

  19. Maat RC, Roksund OD, Halvorsen T, et al. Audiovisual assessment of exercise-induced laryngeal obstruction: reliability and validity of observations. Eur Arch Otorhinolaryngol. 2009;266:1929–36.

    Article  PubMed  Google Scholar 

  20. Walsted ES, Swanton LL, van van Someren K, et al. Laryngoscopy during swimming: a novel diagnostic technique to characterize swimming-induced laryngeal obstruction. Laryngoscope. 2017;127:2298–301.

    Article  PubMed  Google Scholar 

  21. Morris MJ, Grbach VX, Deal LE, Boyd SY, Morgan JA, Johnson JE. Evaluation of exertional dyspnea in the active duty patient: the diagnostic approach and the utility of clinical testing. Mil Med. 2002;167(4):281–8.

    Article  PubMed  Google Scholar 

  22. Morris MJ, Deal LE, Bean DR, Grbach VX, Morgan JA. Vocal cord dysfunction in patients with exertional dyspnea. Chest. 1999;116(6):1676–82.

    Article  CAS  PubMed  Google Scholar 

  23. Newman KB, Mason UG 3rd, Schmaling KB. Clinical features of vocal cord dysfunction. Am J Respir Crit Care Med. 1995;152(4):1382–6.

    Article  CAS  PubMed  Google Scholar 

  24. Olin JT, Clary MS, Connors D, et al. Glottic configuration in patients with exercise‐induced stridor: a new paradigm. Laryngoscope. 2014;124(11):2568–73.

    Article  PubMed  Google Scholar 

  25. Sataloff RT, Mandel S, Heman-Ackah YD, Abaza M. Laryngeal electromygraphy. 3rd ed. San Diego: Plural Publishing; 2017. p. 1–181.

    Google Scholar 

  26. Scherer RC. Laryngeal function during phonation. In: Sataloff RT. Professional voice: the science of art of clinical care, 4th ed. San Diego: Plural Publishing; 2017. p. 281–308.

    Google Scholar 

  27. Wysocki J, Kielska E, Orszulak P, Reymond J. Measurements of pre- and postpubertal human larynx: a cadaver study. Surg Radiol Anat. 2008;30:191–9.

    Article  PubMed  Google Scholar 

  28. Hocevar-Boltezar I, Krivec U, Sereg-Bahar M. Laryngeal sensitivity testing in youth with exercise-inducible laryngeal obstruction. Int J Rehabil Res. 2017;40:146–51.

    Article  PubMed  Google Scholar 

  29. Famokunwa B, Walsted ES, Hull JH. Assessing laryngeal function and hypersensitivity. Pulm Pharmacol Ther. 2019;56:108–15.

    Article  CAS  PubMed  Google Scholar 

  30. Benninger C, Parsons JP, Mastronarde JG. Vocal cord dysfunction and asthma. Curr Opin Pulmon Med. 2011;17(1):45–9.

    Article  Google Scholar 

  31. Kolnes LJ, Stensrud T. Exercise-induced laryngeal obstruction in athletes: contributory factors and treatment implications. Physiother Theory Pract. 2019;35(12):1170–81.

    Google Scholar 

  32. Vertigan AE, Kapela SM, Kearney EK, Gibson PG. Laryngeal dysfunction in cough hypersensitivity syndrome: a cross-sectional observational study. J Allergy Clin Immunol Pract. 2018;6(6):2087–95.

    Article  PubMed  Google Scholar 

  33. Vertigan AE, Bone SL, Gibson PG. Laryngeal sensory dysfunction in laryngeal hypersensitivity syndrome. Respirology. 2013;18(6):948–56.

    Article  PubMed  Google Scholar 

  34. Ryan NM, Vertigan AE, Gibson PG. Chronic cough and laryngeal dysfunction improve with specific treatment of cough and paradoxical vocal fold movement. Cough. 2009;5(1):1–8.

    Article  Google Scholar 

  35. Wilhelm FH, Gevirtz R, Roth WT. Respiratory dysregulation in anxiety, functional cardiac, and pain disorders: assessment, phenomenology, and treatment. Behav Modif. 2001;25(4):513–45.

    Article  CAS  PubMed  Google Scholar 

  36. McFadden ER Jr, Zawadski DK. Vocal cord dysfunction masquerading as exercise-induced asthma. A physiologic cause for “choking” during athletic activities. Am J Respir Crit Care Med. 1996;153:942–7.

    Article  PubMed  Google Scholar 

  37. Powell SA, Nguyen CT, Gaziano J, Lewis V, Lockey RF, Padhya TA. Mass psychogenic illness presenting as acute stridor in an adolescent female cohort. Anna Otol Rhinol Laryngol. 2007;116(7):525–31.

    Article  Google Scholar 

  38. Forrest LA, Husein T, Husein O. Paradoxical vocal cord motion: classification and treatment. Laryngoscope. 2012;122(4):844–53.

    Article  PubMed  Google Scholar 

  39. Husein OF, Husein TN, Gardner R, et al. Formal psychological testing in patients with paradoxical vocal fold dysfunction. Laryngoscope. 2008;118(4):740–7.

    Article  PubMed  Google Scholar 

  40. Revill AL, Vann NC, Akins VT, et al. Dbx1 precursor cells are a source of inspiratory XII premotoneurons. elife. 2015;4:e12301.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kottick A, Del Negro CA. Synaptic depression influences inspiratory–expiratory phase transition in Dbx1 interneurons of the preBötzinger complex in neonatal mice. J Neurosci. 2015;35(33):11606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vann NC, Pham FD, Hayes JA, Kottick A, Del Negro CA. Transient suppression of Dbx1 preBötzinger interneurons disrupts breathing in adult mice. PLoS One. 2016;11(9):e0162418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hisa Y, Bamba H, Koike S, Shogaki K, Tadaki N, Uno T. Neurotransmitters and neuromodulators involved in laryngeal innervation. Ann Otol Rhinol Laryngol Supp. 1999;108:3–14.

    Article  Google Scholar 

  44. Ramaswamy S, Shankar SK, Manjunath KY, Devanathan PH, Nityaseelan N. Ultrastructure of the ganglion on human internal laryngeal nerve. Neurosci Res. 1994;18(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  45. Ibanez M, Valderrama‐Canales FJ, Maranillo E, et al. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types. Clin Anat. 2010;23(6):673–82.

    Article  PubMed  Google Scholar 

  46. Demmink-Geertman L, Dejonckere PH. Neurovegetative symptoms and complaints before and after voice therapy for nonorganic habitual dysphonia. J Voice. 2008;22(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  47. Helou LB, Wang W, Ashmore RC, Rosen CA, Abbott KV. Intrinsic laryngeal muscle activity in response to autonomic nervous system activation. Laryngoscope. 2013;123(11):2756–65.

    Article  PubMed  Google Scholar 

  48. Sataloff RT. Clinical anatomy and physiology of the voice. In: Sataloff RT. Professional voice: the science of art of clinical care, 4th ed. San Diego: Plural Publishing; 2017. p. 157–95.

    Google Scholar 

  49. Iwarsson J, Sundberg J. Effects of lung volume on vertical larynx position during phonation. J Voice. 1998;12:159–65.

    Article  CAS  PubMed  Google Scholar 

  50. Iwarsson J. Effects of inhalatory abdominal wall movement on vertical laryngeal position during phonation. J Voice. 2001;15:384–94.

    Article  CAS  PubMed  Google Scholar 

  51. Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.

    Article  PubMed  Google Scholar 

  52. Vertigan AE, Gibson PG, Theodoros DG, Winkworth AL, Borgas T, Reid C. Involuntary glottal closure during inspiration in muscle tension dysphonia. Laryngoscope. 2006;116:643–9.

    Article  PubMed  Google Scholar 

  53. Aaron AJ, Deems DA, Sataloff RT. Spasmodic dysphonia. In: Sataloff RT. Professional voice: the science of art of clinical care, 4th edition. San Diego: Plural Publishing; 2017. p. 1077–100.

    Google Scholar 

  54. Boulet LP, Turmel J, Côté A. Asthma and exercise-induced respiratory symptoms in the athlete: new insights. Curr Opin Pulm Med. 2017;23(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  55. Lacroix VJ. Exercise-induced asthma. Phys Sportsmed. 1999;27(12):75–92.

    Article  CAS  PubMed  Google Scholar 

  56. Kurowski M, Jurczyk J, Krysztofiak H, Kowalski ML. Exercise‐induced respiratory symptoms and allergy in elite athletes: allergy and asthma in polish Olympic athletes (a(2)POLO) project within GA(2)LEN initiative. Clin Respir J. 2016;10(2):231–8.

    Article  PubMed  Google Scholar 

  57. Salem L, Dao VA, Shah-Hosseini K, et al. Impaired sports performance of athletes suffering from pollen-induced allergic rhinitis: a cross-sectional, observational survey in German athletes. J Sports Med Phys Fitness. 2018;59(4):686–92.

    PubMed  Google Scholar 

  58. Perrotta F, Simeon V, Bonini M, et al. Evaluation of allergic diseases, symptom control, and relation to infections in a Group of Italian Elite Mountain Bikers. Clin J Sport Med. 2020;30(5):465–9.

    PubMed  Google Scholar 

  59. Christensen PM, Thomsen SF, Rasmussen N, Backer V. Exercise-induced laryngeal obstructions: prevalence and symptoms in the general public. Eur Archi Otorhinolaryngol. 2011;268(9):1313–9.

    Article  Google Scholar 

  60. Côté A, Turmel J, Boulet LP. Exercise and asthma. Semin Respir Crit Care Med. 2018;39(1):19–28.

    Article  PubMed  Google Scholar 

  61. Brennan FH Jr, Alent J, Ross MJ. Evaluating the athlete with suspected exercise-induced asthma or bronchospasm. Curr Sports Med Rep. 2018;17(3):85–9.

    Article  PubMed  Google Scholar 

  62. Bonini M, Silvers W. Exercise-induced bronchoconstriction: background, prevalence, and sport considerations. Immunol Allergy Clin N Am. 2018;38(2):205–14.

    Article  Google Scholar 

  63. Levai IK, Hull JH, Loosemore M, Greenwell J, Whyte G, Dickinson JW. Environmental influence on the prevalence and pattern of airway dysfunction in elite athletes. Respirology. 2016;21(8):1391–6.

    Article  PubMed  Google Scholar 

  64. Bougault V, Drouard F, Legall F, Dupont G, Wallaert B. Allergies and exercise-induced bronchoconstriction in a youth academy and reserve professional soccer team. Clin J Sport Med. 2017;27(5):450–6.

    Article  PubMed  Google Scholar 

  65. Patel NJ, Jorgensen C, Kuhn J, Merati AL. Concurrent laryngeal abnormalities in patients with paradoxical vocal fold dysfunction. Otolaryngol Head Neck Surg. 2004;130(6):686–9.

    Article  PubMed  Google Scholar 

  66. Hull JH, Godbout K, Boulet LP. Exercise-associated dyspnea and stridor: thinking beyond asthma. J Allergy Clin Immunol Pract. 2020;8(7):2202–8.

    Article  PubMed  Google Scholar 

  67. Sutcliffe JH, Greenberger PA. Identifying psychological difficulties in college athletes. J Allergy Clin Immunol Pract. 2020;8(7):2216–9.

    Article  PubMed  Google Scholar 

  68. Loughlin CJ, Koufman JA. Paroxysmal laryngospasm secondary to gastroesophageal reflux. Laryngoscope. 1996;106(12):1502–5.

    Article  CAS  PubMed  Google Scholar 

  69. Murry T, Branski RC, Yu K, Cukier‐Blaj S, Duflo S, Aviv JE. Laryngeal sensory deficits in patients with chronic cough and paradoxical vocal fold movement disorder. Laryngoscope. 2010;120(8):1576–81.

    Article  PubMed  Google Scholar 

  70. Andesron JA. Work-associated irritable larynx syndrome. Curr Opin Allergy Clin Immunol. 2015;15(12):150–5.

    Google Scholar 

  71. Slomka WS, Abedi E, Sismanis A, Barlascini CO Jr. Paralysis of the recurrent laryngeal nerve by an extracapsular thyroid adenoma. Ear Nose Throat J. 1989;68(11):855–6.

    CAS  PubMed  Google Scholar 

  72. Baranyai L, Madarasz G. Recurrent nerve paralysis following lung surgery. J Thorac Cardiovasc Surg. 1963;46(4):531–6.

    Article  CAS  PubMed  Google Scholar 

  73. Stelzig Y, Hochhaus W, Gall V, Henneberg A. Laryngeal manifestations in patients with Parkinson disease. Laryngorhinootologie. 1999;78(10):544–51.

    Article  CAS  PubMed  Google Scholar 

  74. Plasse HM, Lieberman AN. Bilateral vocal cord paralysis in Parkinson’s disease. Arch Otolaryngol. 1981;107(4):252–3.

    Article  CAS  PubMed  Google Scholar 

  75. Read D, Young A. Stridor and parkinsonism. Postgrad Med J. 1983;59(694):520–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hamdan AL, Satalof RT, Hawkshaw MJ. Laryngeal manifestations of neurologic disorders. In: Laryngeal manifestations of system diseases. San Diego: Plural Publishing; 2019. p. 87–118.

    Google Scholar 

  77. Forshew DA, Bromberg MB. A survey of clinicians’ practice in the symptomatic treatment of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(4):258–63.

    Article  PubMed  Google Scholar 

  78. Jiang JJ, Titze IR. Measurement of vocal fold intraglottal pressure and impact stress. J Voice. 1994;1;8(2):132–44.

    Article  Google Scholar 

  79. Primov-Fever A, Lidor R, Meckel Y, Amir O. The effect of physical effort on voice characteristics. Folia Phoniatr Logop. 2013;65(6):288–93.

    Article  PubMed  Google Scholar 

  80. Baken RJ. An overview of laryngeal function of voice production. In: Sataloff RT. Professional voice. The science and art of clinical care. 4th ed. San Diego: Plural Publishing; 2017. p. 259–80.

    Google Scholar 

  81. Titze IR. Mechanical stress in phonation. J Voice. 1994;8(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  82. Altman KW, Simpson CB, Amin MR, Abaza M, Balkissoon R, Casiano RR. Cough and paradoxical vocal fold motion. Otolaryngol Head Neck Surg. 2002;127(6):501–11.

    Article  PubMed  Google Scholar 

  83. Vertigan AE, Gibson PG. Chronic refractory cough as a sensory neuropathy: evidence from a reinterpretation of cough triggers. J Voice. 2011;25(5):596–601.

    Article  PubMed  Google Scholar 

  84. Altman KW, Mirza N, Ruiz C, Sataloff RT. Paradoxical vocal fold motion: presentation and treatment options. J Voice. 2000;14(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  85. van Nieuwenhoven MA, Brouns F, Brummer RJ. Gastrointestinal profile of symptomatic athletes at rest and during physical exercise. Eur J Appl Physiol. 2004;91(4):429–34.

    Article  PubMed  CAS  Google Scholar 

  86. Sataloff RT, Castell DO, Katz PO, Sataloff DM, Hawkshaw MJ. Reflux and other gastroenterologic conditions that may affect the voice. In: Sataloff RT. Professional voice: the science and art of clinical care. 4th ed. San Diego: Plural Publishing; 2017. p. 907–98.

    Google Scholar 

  87. Lechien JR, Saussez S, Harmegnies B, Finck C, Burns JA. Laryngopharyngeal reflux and voice disorders: a multifactorial model of etiology and pathophysiology. J Voice. 2017;31(6):733–52.

    Article  PubMed  Google Scholar 

  88. Jr Akst LM, Hamdan AL, Schindler A, et al. Evaluation and management of laryngopharyngeal reflux disease: state of the art review. Otolaryngol Head Neck Surg 2019;160(5):762–782.

    Article  PubMed  Google Scholar 

  89. Wismen T, Foster K, Curtis K. Mental health following traumatic physical injury: an integrative literature review. Injury. 2013;44(11):1383–90.

    Article  Google Scholar 

  90. Aron CM, Harvey S, Hainline B, Hitchcock ME, Reardon CL. Post-traumatic stress disorder (PTSD) and other trauma-related mental disorders in elite athletes: a narrative review. Br J Sports Med. 2019;53(12):779–84.

    Article  PubMed  Google Scholar 

  91. Timpka T, Spreco A, Dahlstrom O, et al. Suicidal thoughts (ideation) among elite athletics (track and field) athletes: associations with sports participation, psychological resourcefulness and having been a victim of sexual and/or physical abuse. Br J Sports Med. 2021;55:198–205.

    Google Scholar 

  92. Regier DA, Kuhl EA, Kupfer DJ. The DSM‐5: classification and criteria changes. World Psychiatry. 2013;12(2):92–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Holmqvist S, Santtila P, Lindström E, Sala E, Simberg S. The association between possible stress markers and vocal symptoms. J Voice. 2013;27(6):787.e1–787.e10.

    Article  Google Scholar 

  94. Van Lierde K, Van Heule S, De Ley S, Mertens E, Claeys S. Effect of psychological stress on female vocal quality. Folia Phoniatr Logop. 2009;61(2):105–11.

    Article  PubMed  Google Scholar 

  95. Morris MJ, Allan PF, Perkins PJ. Vocal cord dysfunction: etiologies and treatment. Clin Pulm Med. 2006;13(2):73–86.

    Article  Google Scholar 

  96. Sandage MJ, Zelazny SK. Paradoxical vocal fold motion in children and adolescents. Lang Speech Hearing Serv Sch. 2004;35:353–62.

    Article  Google Scholar 

  97. Johnston KL, Bradford H, Hodges H, Moore CM, Nauman E, Olin JT. The Olin EILOBI breathing techniques: description and initial case series of novel respiratory retraining strategies for athletes with exercise-induced laryngeal obstruction. J Voice. 2018;32:698–704.

    Article  PubMed  Google Scholar 

  98. Reisner C, Borish L. Heliox therapy for acute vocal cord dysfunction. Chest. 1995;108(05):1477.

    Article  CAS  PubMed  Google Scholar 

  99. Richards-Mauzé MM, Banez GA. Vocal cord dysfunction: evaluation of a four-session cognitive–behavioral intervention. Clin Pract Pediatr Psychol. 2014;2(1):27–38.

    Google Scholar 

  100. Olin JT, Deardorff EH, Fan EM, et al. Therapeutic laryngoscopy during exercise: a novel non‐surgical therapy for refractory EILO. Pediatr Pulmonol. 2017;52(6):813–9.

    Article  PubMed  Google Scholar 

  101. Jabbari B. History of botulinum toxin treatment in movement disorders. Tremor Other Hyperkinet Mov. 2016;6:394.

    Article  Google Scholar 

  102. Peckham EL, Lopez G, Shamim EA, et al. Clinical features of patients with blepharospasm: a report of 240 patients. Eur J Neurol. 2011;18:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brinn MF, Blitzer A, Braun N, Stewart C, Fahn S. Respiratory and obstructive laryngeal dystonia: treatment with botulinum toxin (Botox). Neurology. 1991;41(suppl 1):291.

    Google Scholar 

  104. Garibaldi E, LaBlance G, Hibbett A, Wall L. Exercise-induced paradoxical vocal cord dysfunction: diagnosis with videostroboscopic endoscopy and treatment with Clostridium toxin. J Allergy Clin Immunol. 1993;91:200.

    Google Scholar 

  105. Maillard I, Schweizer V, Broccard A, Duscher A, Liaudet L, Schaller MD. Use of botulinum toxin type a to avoid tracheal intubation or tracheostomy in severe paradoxical vocal cord movement. Chest. 2000;118(3):874–7.

    Article  CAS  PubMed  Google Scholar 

  106. Montojo J, González R, Hernández E, Zafra M, Plaza G. Office-based laryngeal injection of botulinum toxin for paradoxical vocal fold motion in a child. Int J Pediatr Otorhinolaryngol. 2015;79(7):1161–3.

    Article  PubMed  Google Scholar 

  107. deSilva B, Crenshaw D, Matrka L, Forrest LA. Vocal fold botulinum toxin injection for refractory paradoxical vocal fold motion disorder. Laryngoscope. 2019;129(4):808–11.

    Article  CAS  PubMed  Google Scholar 

  108. Vance D, Heyd C, Pier M et al. Paradoxical vocal fold movement: a retrospective analysis. J Voice. Published online May 2020.

    Google Scholar 

  109. American Psychological Association. Hypnosis. https://www.apa.org/search?query=hypnosis. Published 2008.

  110. Caraon P, O’toole C. Vocal cord dysfunction presenting as asthma. Ir Med J. 1991;84(3):98–9.

    CAS  PubMed  Google Scholar 

  111. Smith MS. Acute psychogenic stridor in an adolescent athlete treated with hypnosis. Pediatrics. 1983;18:991–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Latif Hamdan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamdan, AL., Sataloff, R.T., Hawkshaw, M.J. (2021). Exercise-Induced Laryngeal Obstruction (EILO) in Athletes. In: Voice Disorders in Athletes, Coaches and other Sports Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-69831-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69831-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69830-0

  • Online ISBN: 978-3-030-69831-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics