Skip to main content

Fundamentals of Global Carbon Budgets and Climate Change

  • Chapter
  • First Online:
Fundamental Principles of Environmental Physics

Abstract

Global climate grid.9983.b change and GHG emissions are essential topics for understanding physical processes ongoing in the atmospheric boundary layer, within a control volume extending from the top ground to the troposphere. This chapter aimed therefore to deliver a qualitative and quantitative approach to climate change processes and carbon balance components. This approach is facilitated by the grounding on fundamentals of atmosphere and microclimate dynamics, such as the radiation windowing, spectral turbulence, and heat transfer processes, previously discussed. The first question addressed was the quantification over the last decades of the main components of the global carbon budgets including fossil fuel emissions, land-use change, carbon uptake by land, and oceans or CO2 atmospheric concentration. The climate change predictive scenarios of IPCC are described, mainly focusing on the interactions among atmospheric carbon, carbon sequestration, environmental temperature, and precipitation. Also discussed is the occurrence of extreme events, such as heatwaves and precipitation episodes. This discussion reports modeling results in the literature characterizing essential parameters of extreme events such as duration, peaking, and returning periods in the context of natural and/or anthropogenic driving. Finally, some elaboration is given to biochar as a promising technology for carbon sequestration and mitigation of carbon emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACACIA Project. (2000). In Parry, M. (Ed.), Assessment of potential effects and adaptations for climate change in Europe: The Europe Acacia Project (p. 324). Norwich, University of East Anglia.

    Google Scholar 

  • Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., et al. (2015). Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45, 2775–2802.

    Article  Google Scholar 

  • Allan, R. (2011). Human influence on rainfall. Nature, 470, 344–345.

    Article  CAS  Google Scholar 

  • Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., et al. (2002). The paradoxical increase of mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters, 29(11), 2–4.

    Article  Google Scholar 

  • AR4 IPCC Report. (2008). In R. K. Pachauri & A. Reisinger (Eds.) Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change (112 pp.). Geneva, Switzerland: Fourth Assessment Report, IPCC.

    Google Scholar 

  • AR5 IPCC Report, 2015. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (Eds.)] (151 pp.). Geneva, Switzerland: IPCC. ISBN 978-92-9169-143-2.

    Google Scholar 

  • Boer, G., Flato, G., & Ramsden, D. (2000). A transient climate change simulation with greenhouse gas and serosol forcing: Projected climate for the 21st century. Climate Dynamics, 16, 427–450.

    Article  Google Scholar 

  • Cheddadi, R., Lamb, H. F., Guiot, J., & van der Kaars, S. (1998). Holocene climatic change in morocco: A quantitative reconstruction from pollen data. Climate Dynamics, 14, 883–890.

    Article  Google Scholar 

  • Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature climate change|Advance Online Publication (6 pp.). Macmillan Publisher Ltd. Retrieved from www.nature.com/natureclimatechange.

  • Coumou, D., & Robinson, A. (2013). Historic and future increase in the global land area affected by monthly heat extremes. Environmental Research Letters, 8, 03401.

    Article  Google Scholar 

  • Coumou, D., Robinson, A., & Rahmstorf, S. (2013). Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118, 771–782.

    Article  Google Scholar 

  • Cubasch, U., von Storch, H., Waszkewitzl, J., & Zorita, E. (1996). Estimates of climate change in southern Europe derived from dynamical climate model output. Climate Research, 7, 129–149.

    Article  Google Scholar 

  • Della-Marta, P., Haylock, M., Luterbacher, J., & Wanner, H. (2007). Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research, 112, D15103.

    Article  Google Scholar 

  • Donat, M., & Alexander, L. (2012). The shifting probability distribution of global daytime and night-time temperatures. Geophysical Research Letters, 39, L14707.

    Article  Google Scholar 

  • Donat, M., Alexander, L., Yang, H., Durre, I., Vose, R., Dunn, R., et al. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118, 2098–2118.

    Article  Google Scholar 

  • Doumenge, F. (1997). Environmental Change and the Mediterranean. (UNU Lectures, 16, 17).

    Google Scholar 

  • Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 1114, 644–653.

    Article  CAS  Google Scholar 

  • Fischer, E., and Knutti, E. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5, 560–565.

    Article  Google Scholar 

  • Fontana, G., Toreti, A., Ceglar, A., & De Sanctis, G. (2015). Early heat waves over Italy and their impacts on durum wheat yields. Natural Hazards Earth Systems Science, 15, 1631–1637.

    Article  Google Scholar 

  • Founda, D., Varotsos, K., Pierros, F., & Giannakopoulos, C. (2019). Observed and projected shifts in hot extremes’ season in the eastern mediterranean global and planetary. Change Global and Planetary Change, 175, 190–200.

    Article  Google Scholar 

  • Gaunt, J., & Cowie, A. (2009). Biochar, greenhouse gas accounting and emissions trading, Chapter 18. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management (405 pp.). Earthscan. ISBN 978-1-84407-658-1.

    Google Scholar 

  • Giannakopoulos, C. M., Bindi, M., Moriondo, M., LaSager, P., & Tin, T. (2005). Climate change impacts in the mediterranean resulting for 2 ℃ global temperature rise. A report for the WWF for a living planet. Gand, Switzerland: The Global Conservation Organization, WWF.

    Google Scholar 

  • Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic Changes and Associated Impacts in the Mediterranean Resulting from a 2 °C global warming. Glob Planet Change, 68(3), 209–224.

    Article  Google Scholar 

  • Giorgi, F. (2006). Climate Change Hot-spots. Geophysical Research Letters, 33, L08707. Global Warming Potential, Wikipedia. Retrieved April, 2019, from https://en.wikipedia.org/wiki/Global_warming_potential.

  • Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight R. W., Jamason, P. F., Hennessy, K. J. et al. (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. In: T. R. Karl, N. Nicholls & A. Ghazi (Eds.), Weather and Climate Extremes. Dordech: Springer. https://doi.org/10.1007/978-94-015-9265-9_15.

  • Groisman, P. Y., Knight, R., Easterling, D., Karl, T., Hegerl, G., & Razuvaev, V. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326–1350.

    Article  Google Scholar 

  • Grunderbeek, P., Tourre, Y. (2008). Mediterranean basin: Climate change and impacts during the 21st century. Part I, Chapter 1, pp. 1–64. In: Climate Change and Energy in the Mediterranean. Plan Bleu, Regional Activity Center, Sophia Antipolis. (https://www.eib.org/attachments/country/climate_energy_mediterranean_en.pdf) (accessed in April 2019).

  • Hansen, J., Ruedy, R., & Sato, M. (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research, 106, 23947–23963.

    Article  Google Scholar 

  • Hartmann, D. L., Klein, A. M., Tank, Rusticucci, M., Alexander, Brönnimann, S., et al. (2013). Observations: Atmosphere and surface supplementary material. In Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change [T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (Eds.)]. Retrieved from www.climatechange2013.org.

  • Hasselmann, K. F., Bengtsson, L., Cubasch, U., Hegerl, G. C., Rodhe, H., Roeckner, E. et al. (1995). Detection of anthropogenic climate change using a fingerprint method. Report/Max-Planck-Institute für Meteorologie, 168. http://hdl.handle.net/21.11116/0000-0000-3F03-7.

  • Jackson, R., Le Quéré, C., Andrew, R., Canadell, J., Korsbakken, J., Liu, Z., et al. (2018). Global energy growth is outpacing decarbonization. Environmental Research Letters, 13(120401), 1–7.

    Google Scholar 

  • Karas, J. (2006). Climate Change and the Mediterranean Region. Report, Greenpeace (34 pp.). Retrieved April, 2019, from http://www.greenpeace.org/international/Global/international/planet-2/report/2006/3/climate-change-and-the-mediter.pdf).

  • Katttemberg, A. et al. (1996). Climate models—Projections of future climate. In J. T. Houghton et al. (Eds.), Climate change 1995: The science of climate change. Report of IPCC Workin g Group I (pp. 289–357). Cambridge University Press.

    Google Scholar 

  • Kuglitsch, F., Toreti, F., Xoplaki, E., Della-Marta, M., Zerefos, F., Türkeş, M., et al. (2010). Heat Wave Changes in the Eastern Mediterranean since 1960. Geophysical Research Letters, 37, 1–5.

    Article  Google Scholar 

  • Le Quéré, C., Andrew, R., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al. (2018). Global carbon budget. Earth System Science Data, 10, 1–54.

    Google Scholar 

  • Lee, Y., Park, J., Ryu, C., Gang, K., Yang, W., Park, Y.-K., et al. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 & #xB0;C. Bioresource Technology, 148, 196–201.

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Climate Change, 11, 403–427.

    Article  Google Scholar 

  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381–387.

    Article  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction, Chapter 1. In J. Lehmann, & S. Joseph, (Eds.), Biochar for environmental management (405 pp.) Earthscan. ISBN 978-1-84407-658-1.

    Google Scholar 

  • Lehmann, J., Amonette, J., & Roberts, K. (2010). Role of biochar in mitigation of climate change, Chapter 17. In D. Hillel & C. Rosenzweig, C. (Eds.), Handbook of Climate Change and Agroecosystems Impacts, Adaptation, and Mitigation, Series on Climate Change Impacts, Adaptation and Mitigation (Vol. 1, 452 pp).

    Google Scholar 

  • Lewis, C., & Karoly, D. (2013). Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophysical Research Letters, 40, 3705–3709.

    Article  Google Scholar 

  • Maheras, P. (1987). Temporal Fluctuations of annual precipitation in Palma and Thessaloniki. Journal Meteorology, 12, 305–308.

    Google Scholar 

  • Maheras, P., & Kolyva-Machera, F. (1990). Temporal and spatial characteristics of annual precipitation over the balkans in the twentieth century. International Journal of Climatology, 10, 495–504.

    Article  Google Scholar 

  • Mann, M., Bradley, R., & Hughes, M. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787.

    Article  CAS  Google Scholar 

  • Meehl, G., Karl, T., Easterling, D., Changnon, S., Pielke, Jr. R., Evans, J. et al. (2000). An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts and model projections. Bulletin of the American Meteorological Society, 81(3), 413–416.

    Google Scholar 

  • Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environmental Science and Technology, 45, 1473–1479.

    Article  CAS  Google Scholar 

  • Mitchell, J., Davis, R., Ingram, W., & Senior, C. (1995). On surface temperatures, greenhouse gases and aerosols: Models and observation. Journal of Climate, 8, 2364–2386.

    Article  Google Scholar 

  • Mitra, A. (2020). The blue carbon concept. In: S.C. Patra & Mitra (Eds.), Webinar articles on Blue Carbon Domain: A Potential Regulator of Climate Change. University of Calculta.

    Google Scholar 

  • Oliveira, F., Patel, A., Jaisi, D., Adhikari, S., & Lu, H. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110–122.

    Article  CAS  Google Scholar 

  • Otto, F., Massey, G., van Oldenborgh, G., & Jones, R. (2012). Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophysical Research Letters, 39, L04702.

    Article  Google Scholar 

  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G., & Smith, P. (2016). Climate-Smart soils. Nature, 532, 49–57. https://doi.org/10.1038/nature17174.

    Article  CAS  Google Scholar 

  • Perkins-Kirkpatric, S., & Gibson, P. (2017). Changes in regional heatwave characteristics as a function of increasing global temperature, scientific reports, 7: 12256. Retrieved December, 2019, from www.nature.con/scientificreports.

  • Perkins, S., Alexander, L., & Nairn, J. (2012). Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39, L20714.

    Article  Google Scholar 

  • Quiggin, J. (2019). Opportunity costs: Can carbon taxing become a positive-sum game?. Retrieved April, 2019, from https://aeon.co/ideas/opportunity-costs-can-carbon-taxing-become-a-positive-sum-game.

  • Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., & Ruedy, R. (1990). Potential evapotranspiration and the likelihood of future drought. Journal of Geophysical Research, 95, 9983–10004.

    Article  Google Scholar 

  • Roberts, K., Gloy, B., Joseph, S., Scott, R., & Lehman, J. (2010). Life cycle assessment of biochar systems: Estimating the energetic. Economic and Climate Change Potential, 44, 827–833.

    CAS  Google Scholar 

  • Robinson, P. (2001). On the definition of heat have. Journal of Applied Meteorology, 40, 762–775.

    Article  Google Scholar 

  • Rosenzwieg, C., & Tubiello, F. (1997). Impacts of global climate change on mediterranean agriculture: Current methodologies and future directions. An introductory essay. Mitigation and Adaptation Strategies for Global Change, 1(3), 219–232.

    Article  Google Scholar 

  • Schenkel, Y., Temmerman, M., Van Belle, J.-F., & Vanker kove, R. (1999). New Indicator for the evaluation of the wood carbonization process. Energy Sources, 21, 935–943.

    Google Scholar 

  • Schiermeier, Q. (2010). Mediterranean most at risk from European heatwaves. Nature News. https://doi.org/10.1038/news.2010.238.

  • Segal, B., Mandel, M., Alpert, P., Stein, U. & Mitchell, M. J. (1994). Some assessment of potential 2 × CO2 climatic effects on water balance components in the eastern mediterranean. Climate Change, 27, 351–371.

    Google Scholar 

  • Sippel, S., & Otto, F. (2014). Beyond climatological extremes—Assessing how the odds of hydrometeorological extreme events in south-east Europe change in a warming climate. Climatic Change, 125, 381–398.

    Article  Google Scholar 

  • Stott, P., Stone, D., & Allen, M. (2004). Human contribution to the European heatwave of 2003. Nature, 432, 610–614.

    Article  CAS  Google Scholar 

  • Stull, R. (2000). Meteorology for scientist and engineers (2nd ed., p. 502). Thomson Learning: Brooks/Cole.

    Google Scholar 

  • Verheijen, F., Jeffrey, S., Bastos, A., van der Velde, M., & Diafas, I. (2010). Biochar application to soils-A critical scientific review on soil properties, processes and functions. European Commission, Institute for Environment and Sustainability, 166 pp. ISBN 978-02-79-14293-2.

    Google Scholar 

  • Westra, S., Alexander, L., & Zwiers, F. (2013). Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26, 3904–3918.

    Article  Google Scholar 

  • Wigley, T. (1992). Future climate of the mediterranean basin with particular emphasis on changes in precipitation. In L. Jeftic, J. D. Milliman, & G. Sestini (Eds.), Climatic change and the mediterranean (pp. 15–44). London: Edward Arnold.

    Google Scholar 

  • WMO. (1997). WMO Statement on the Status of the Global Climate in 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Rodrigues .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, A., Sardinha, R.A., Pita, G. (2021). Fundamentals of Global Carbon Budgets and Climate Change. In: Fundamental Principles of Environmental Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-69025-0_8

Download citation

Publish with us

Policies and ethics