Skip to main content

Heat and Mass Transfer Processes

  • Chapter
  • First Online:
Fundamental Principles of Environmental Physics

Abstract

Heat and mass transfer principles, coupled with the modulation of energy and mass budgets, were covered in this chapter. Transfer processes regulate a spectrum of phenomena, such as variations of carbon and water exchanges or sediment transport. The main topics related to heat conduction were Fourier’s law and the thermal exchanges in the upper layers of soils, considering their influence in stationary and transient processes. Natural and forced convection processes were assessed through empirical parameters, ratios, and equations reflecting the interactions between fluid mechanics, in air and water, and the transfer of heat, particles, and molecules. Empirical tools for convection analysis considered the prevalence of viscous and inertial forces, allowing also estimation of ratio between depths of thermal and momentum boundary layers in objects. The fundamentals of radiation emissivity, transmissivity, absorption, net radiation, and radiative spatial relationships were also considered. The theoretical foundations and environmental relevance of mass transfer of gases and particles and the importance of Brownian, viscous, or Newtonian drag were also developed. The associated processes of creeping, jumping, impaction or wet transfer, dependent on the balance of forces such as friction, inertia, or gravity through the wind field and transport of sediments in watercourses were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arya, S. P. (1988). Introduction to micrometeorology (Vol. 42, 307 pp.). International geophysics series. Academic Press.

    Google Scholar 

  • Bagnold, R. A. (1936). The movement of desert sand. Proceedings of the Royal Society of London. Series A, 157, 594–620.

    Google Scholar 

  • Bagnold, R. A. (1941). The physics of blown sand and desert dunes (p. 265). London: Methuen.

    Google Scholar 

  • Bagnold, R. A. (1980). An empirical correlation of bedload transport rates in flumes in natural rivers. Proceedings of Royal Society of London A, 372(1751), 453–473.

    Google Scholar 

  • Bennet, I. (1965). Monthly maps of mean daily insolation for the United States. Solar Energy, 9, 145–152.

    Article  Google Scholar 

  • Brown, G. W. (1969). Prediction temperatures of small streams. Water Resources Research, 5, 67–75.

    Google Scholar 

  • Camenen, B. (2012). Discussion of understanding the influence of slope on the threshold of coarse grain motion: Revising critical stream power by C. Parker, N. J. Clifford and C.R. Throne. Geomorphology, 126, 51–65.

    Google Scholar 

  • Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (293 pp.). Springer.

    Google Scholar 

  • Cheng, X. L., Zeng, Q. C., & Hu, F. (2012). Stochastics modeling the effect of wind gust on dust entrainment during sand-storm. Chinese Science Bulletin, 57, 3595–3602.

    Google Scholar 

  • Eaton, B. C., & Church, M. (2011). A rational sediment transport scaling relation based on dimensionless stream power. Earth Surface Processes and Landforms, 36, 901–910.

    Article  Google Scholar 

  • Ferguson, R. I. (2005). Estimating critical stream power for bedload transport calculations in Gravel-Bed rivers. Geomorphology, 70, 33–41.

    Article  Google Scholar 

  • Ferguson, R. I. (2012). River chanel slope, flow resistance, and gravel entrainment thresholds. Water Resources Research, 48, 1–13.

    Article  Google Scholar 

  • Foken, T. (2017). Micrometeorolog (2nd ed., 362 pp.). Berlin: Springer.

    Google Scholar 

  • Fox, R. W., & McDonald A. T. (1985). Introduction to fluid mechanics (742 pp.). Wiley.

    Google Scholar 

  • Gates, D. M. (1980). Biophysical ecology (611 p.). Springer.

    Google Scholar 

  • Granja, H. M., Farrel, E. J., Ellis, J. T., & Sherman, D. J. (2012).Eolian Saltation at Esposende Beach, Portugal. Journal of Coastal Research, 56, 327–331.

    Google Scholar 

  • Hillel, D. (1982). Introduction to soil physics (364 pp.). Academic Press.

    Google Scholar 

  • Holman, J. P. (1983). Transferência de calor (639 pp.). McGraw-Hill (in portuguese)

    Google Scholar 

  • Kawamura, R. (1951). Study of sand movement by wind (Vol. 5, No. 34). Institute of Science and Technology, University of Tokyo, Technical Reports. Translated as University of California Hydraulics Engineering Laboratory Report HEL 2–8, 1964.

    Google Scholar 

  • Lamb, M. P., Dietrich, W. E., & Venditti, J. G. (2008). Is the critical shields stress for incipient sediment motion dependent on channel-bed slope? Journal of Geophysical Research: Earth Surface, 113, FO2008. https://doi.org/10.1029/2007JF00083.

  • Lammers, R. W., & Bledsoe, B. (2018). Parsimonious sediment transport equations based on Bagnold’s stream power approach. Earth Surface Processes and Landforms, 43, 242–258.

    Article  Google Scholar 

  • Lee, R. (1978). Forest micrometeorology (276 pp.). Columbia University Press.

    Google Scholar 

  • Levit, H. J., & e Gaspar, R. (1987). Energy budget for greenhouses in humid temperate climate. Agricultural and Forest Meteorology, 42, 241–254.

    Article  Google Scholar 

  • Li, W., Li, H., Shen, S., Cui, F., Shen, B., & Huang, Y. (2018). Study of particle rebound and deposition on fibre surface. Environmental Technology. https://doi.org/10.1080/09593330.2018.1509137.

  • Linacre, E. T. (1972). Leaf temperature, diffusion resistance and transpiration. Agriculture Meteorology, 10, 365–382.

    Article  Google Scholar 

  • Linacre, E. T., Palmer, J. H., & Trickett, G. S. (1964). Heat and moisture transfer from trimmed glasshouse crops. Agricultural Meteorology, 1, 66–72.

    Article  Google Scholar 

  • List, R.J. (1963). Smithsonian meteorological tables (6th ed.). Smithsonian Inst., EUA.

    Google Scholar 

  • Liu, B. Y., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4, 1–9.

    Article  Google Scholar 

  • Martin, Y., & Church, M. (2000). Re-examination of bagnold’s empirical bedload formulae. Earth Surface Processes and Landforms, 25, 1011–1024.

    Article  Google Scholar 

  • Mimoso, J. M. (1987). Transmissão de calor, bases teóricas para aplicação à térmica de edifícios (157 pp.). Lisboa: LNEC (in portuguese).

    Google Scholar 

  • Mitha, S., Tran, M. Q., Werner, B. T., & Half, P. K. (1986). The grain-bed impact process in Aeolian saltation. Acta Mechanica, 63, 267–278.

    Article  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1991). Principles of environmental physics (2nd ed., 291 pp.). Edward Arnold.

    Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (2013). Principles of environmental physics (4th ed., p. 403). Oxford: Academic Press.

    Google Scholar 

  • Oke, T. R. (1992). Boundary layer climates (2nd ed., 435 pp.). Routledge.

    Google Scholar 

  • Özisic, N. M. (1990). Transferência de Calor. Um Texto Básico (661 pp.). Editora Guanabara Koogan S.A. (in portuguese).

    Google Scholar 

  • Parker, C. (2010). Quantifying catchment-scale course sediment dynamics in British rivers. Thesis (Ph.D. dissertation). University of Nottingham, Nottingham

    Google Scholar 

  • Parker, C., Clifford, N. J., & Thorn, C. R. (2011). Understanding the influence of slope on the threshold of coarse grain motion: Revising critical stream power. Geomorphology, 126, 51–65.

    Article  Google Scholar 

  • Rodrigues, A. M. (1993). Balanço energético foliar em estufas. M. Sc. thesis (Environment, Energy profile). Instituto Superior Técnico, U.T.L., Lisbon (in portuguese).

    Google Scholar 

  • Ross, J. (1975). Radiative transfer in plant communities, pp 13–52. In: J. L. Monteith (Ed.), Vegetation and atmosphere (Vol. I, 277 pp.). Academic Press.

    Google Scholar 

  • Seginer, I. (1984). On the night transpiration of the greenhouse roses under glass or plastic cover. Agricultural Meteorology, 30, 257–268.

    Article  Google Scholar 

  • Sinokrot, B. A., & Stefan, H. G. (1993). Stream temperature dynamics measurements and modelling. Water Resources Research, 29, 2299–2321.

    Article  Google Scholar 

  • Spitters, C. J. T., Toussaint, H. A. J. M., & e Goudriaan, J. (1986). Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis, Part I, components of incoming radiation. Agricultural and Forest Meteorology, 38, 217–219.

    Article  Google Scholar 

  • Unsworth, M. H., Philips, N., Link, T. E., Bond, B. J., Falk, M., Harmon, M., et al. (2004). Components and controls of water flux in an old-growth douglas-Fir Western Hemlock ecosystem. Ecosystems, 7, 468–481.

    Article  Google Scholar 

  • Zingg, A. W. (1953). Wind tunnel study of the movement of sedimentary material. In Proceedings of the 5th Hydraulics Conference (Iowa City) (vol. 34,pp. 111–135).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Rodrigues .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, A., Sardinha, R.A., Pita, G. (2021). Heat and Mass Transfer Processes. In: Fundamental Principles of Environmental Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-69025-0_6

Download citation

Publish with us

Policies and ethics