Skip to main content

Exchange of Energy and Mass Over Forest Canopies

  • Chapter
  • First Online:
Fundamental Principles of Environmental Physics

Abstract

This chapter aimed to characterize the aerodynamic mass and energy fluxes over forest canopies. These canopies are rough surfaces wherein flow-gradient assumptions may not be valid, leading to exponential wind profiles in trunk spaces and understory, superimposed by logarithmic profiles above the top of canopies. This leads to airflow regimes wherein canopy stomatal resistance is dependent on tree physiological factors and of short and long-term phenomena, in interaction with aerodynamic variables. Forest canopies are also very prone to intermittent events, such as gusts or ejections, and wake formation in trees downstream, adding components to the usual kinetic energy equations and influencing turbulence spectral dynamics and particle transport. The analysis of drag processes in canopies, in wind tunnel and field, allows also to characterize phenomena such as tree bending and pulling. The evapotranspiration regime of these canopies is also coupled with the moisture of soil and atmosphere, in comparison with lower canopies, with transient flow mechanisms particularly relevant in trunk and understory spaces. Finally, forest canopies are relevant in carbon balance dynamics, especially related to the net ecosystem exchange, on a micro or global scale, and these dynamics reflect the influence of physical and biological factors in carbon sinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard, V., Ourcival, S. R., Joffre, R., e Rocheteau, A. (2008). Seasonal and annual variation of carbon exchange in an evergreen forest in southern france. Global Change Biology, 14, 714–725.

    Google Scholar 

  • Balddochi, D. D. (1994). A comparative study of mass and energy exchange over a close C3 (wheat) and open C4 (corn) canopy: I. the partitioning of available energy into latent and sensible heat exchange. Agricultural and Forest Meteorology, 67, 191–220.

    Article  Google Scholar 

  • Baldocchi, D. D., & Meyers, T. P. (1988). Turbulence structure in a deciduous forest. Boundary Layer Meteorology, 43, 345–364.

    Article  Google Scholar 

  • Baldocchi, D., & Meyers, T. (1991). Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux. Journal of Geophysical Research, 96, 7271–7285.

    Article  CAS  Google Scholar 

  • Baldocchi, D. D., Vogel, A. C., & Hall, B. (1997). Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. Journal of Geophysical Research, 102, 28939–28951.

    Article  CAS  Google Scholar 

  • Blanken, P. D., Black, T. A., Yang, P. C., Neumann, H. H., Nesic, Z., Staebler, R., et al. (1997). Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. Journal of Geophysical Research, 102, 28915–28927.

    Article  Google Scholar 

  • Carrara, A., Janssens, I., Yuste, J., & Ceulemans, R. (2004). Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology, 126, 15–31.

    Article  Google Scholar 

  • Carrara, A., Kowalski, A. S., Neirynck, J., Janssens, I. A., Yuste, J. C., & e Ceulemans, R. (2003). Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology, 119, 209–227.

    Google Scholar 

  • Cellier, P., & Brunet, Y. (1992). Flux-gradient relationships above tall plant canopies. Agricultural and Forest Meteorology, 58, 93–117.

    Article  Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–533.

    Article  CAS  Google Scholar 

  • Coppin, P. A., Raupach, M. R., & Legg, B. J. (1986). Experiments on scalar dispersion within a plant model canopy, Part II: An elevated plane source. Boundary Layer Meteorology, 35, 167–191.

    Article  Google Scholar 

  • Cunha, F. R. (1977). Meteorologia Geral e Agrícola. Mesologia e Meteorologia Agrícolas, Instituto Superior de Agronomia, Lisboa, (in portuguese).

    Google Scholar 

  • Denmead, O. T., & Bradley, E. F. (1985). Flux-gradient relationships in a forest canopy, pp. 421–442. In B. A Hutchinson, B. B. Hichs (eds.). The Forest-Atmosphere Interaction. Proceedings of the Forest Environmental Measurements Conference, Reidel Publishing Company, p. 850.

    Google Scholar 

  • Djomo, S. N., Kasmioui, O., & Ceulemans, R. (2011). Energy and greenhouse gas balance of bioenergy production from poplar and willow: A review. GCB Bioenergy, 3, 181–197.

    Article  CAS  Google Scholar 

  • Ennos, A. R. (1991). The mechanics of anchorage in wheat (Triticum aestivum L.). Journal of Experimental Botany, 42, 1607–1613.

    Article  Google Scholar 

  • Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Gumundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W., Oechel, W., Paw Uv., Tha, K., Pilegaard, K., Rannik, Ü., Rebmann, C., Andrew Suyker, A., Valentini, R., Wilson, K., & Wofsy, S. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53–74.

    Google Scholar 

  • Fazu, C., & Schwerdtfeger, P. (1989). Flux-gradient relationships for momentum and heat over a rough natural surface. Quarterly Journal of the Royal Meteorological Society, 115, 335–352.

    Article  Google Scholar 

  • Foken, T. (2008). Micrometeorology (p. 306). Berlin: Springer Verlag.

    Google Scholar 

  • Foken, T. (2017). Micrometeorology (2nd ed.) (p. 362). Springer Verlag, Berlin.

    Google Scholar 

  • Garrat, J. R. (1980). Surface influence upon vertical profiles in the atmospheric near-surface layer. Quarterly Journal of the Royal Meteorological Society, 106, 803–819.

    Article  Google Scholar 

  • Garrat, J.R. (1994) The atmospheric boundary layer. Cambridge University Press, p. 316.

    Google Scholar 

  • Gash, J. H. C., & Stewart, J. B. (1975). The average surface resistance of a pine forest derived from bowen ratio measurements. Boundary Layer Meteorology, 8, 453–464.

    Article  Google Scholar 

  • Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., et al. (2007). Evidence for soil water control on carbon and water dynamics in european forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143, 123–145.

    Article  Google Scholar 

  • Green, S. R., Grace, J., & Hutchings, N. J. (1995). Observations of turbulent air flow in three stands of widely spaced sitka spruce. Agricultural and Forest Meteorology, 74, 205–225.

    Article  Google Scholar 

  • Jarvis, P. G., & McNaughton, K. J. (1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1–48.

    Article  Google Scholar 

  • Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows (p. 289). Their Structure and Measurement: Oxford University Press.

    Book  Google Scholar 

  • Kelliher, F. M., Leuning, R., Raupach, M. R., & Shulze, E. D. (1995). Maximum conductance for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1–16.

    Article  Google Scholar 

  • Kelliher, F. M., Whitehead, D., Mcaneney, K. J., & Judd, M. J. (1990). Partitioning evapotranspiration into tree and understorey components in two young Pinus radiata D. Don Stands. Agricultural and Forest Meteorology, 50, 211–227.

    Article  Google Scholar 

  • Ladanai, S., & Vinterbäck, J. (2009). Global potential of sustainable biomass for energy, Report 013. SLU, Uppsala, p. 32.

    Google Scholar 

  • Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Den, H. G., & Neumann, H. H. (1990). The influence of atmospheric stability on the budgets of reynolds stress and turbulent kinetic energy within and above a deciduous forest. Journal of Applied Meteorology, 29, 916–933.

    Article  Google Scholar 

  • Lee, X., & Black, T. A. (1993a). Atmospheric turbulence within and above a Douglas fir stand. Part I: statistical properties of the velocity field. Boundary Layer Meteorology, 64, 149–174.

    Google Scholar 

  • Lee, X., & Black, T. A. (1993b). Atmospheric turbulence within and above a douglas fir stand. Part II: eddy fluxes of sensible heat and water vapour. Boundary Layer Meteorology, 64, 369–389.

    Google Scholar 

  • Lindroth, A. (1985). Seasonal and diurnal variation of energy budget components in coniferous forests. Journal of Hydrology, 82, 1–15.

    Article  Google Scholar 

  • Mihailovic, D. T., Branislava, L., Rajkovic, B., & Arsenic, I. (1999). A roughness sublayer profile above a non-uniform surface. Boundary Layer Meteorology, 93, 425–451.

    Article  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1991). Principles of environmental physics (2nd Ed.) (p. 291), Edward Arnold.

    Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (2013). Principles of environmental physics (4th ed., p. 403). Oxford: Academic Press.

    Google Scholar 

  • Oke, T. R. (1992). Boundary layer climates (2nd ed.), 435. Routledge.

    Google Scholar 

  • Pereira, J. S., Tenhunen, J. D., Lange, O. L., Beyschlag, W., Meyer, A., e David, M. M. (1986). Seasonal and diurnal patterns in leaf gas exchange of eucalyptus globulus labill. Trees growing in Portugal. Canadian Journal of Forest Research, 16, 177–184.

    Google Scholar 

  • Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., et al. (2007). Net ecosystem carbon exchange in three contrasting mediterranean ecosystems—the effect of drought. Biogeosciences, 4, 791–802.

    Google Scholar 

  • Pita, G., Gielen, B., Zona, D., Rodrigues, A., Rambal, S., Janssens, I. A., & Ceulemans, R. (2013). Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agricultural and Forest Meteorology, 180, 211–224.

    Article  Google Scholar 

  • Raupach, M. R., & Shaw, R. H. (1982). Averaging procedures for flow within vegetation canopies. Boundary Layer Meteorology, 22, 79–90.

    Article  Google Scholar 

  • Raupach, M. R., & Thom, A. S. (1981). Turbulence in and above plant canopies. Annual Review of Fluid Mechanics, 13, 97–129.

    Article  Google Scholar 

  • Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Miglietta, F., Peressotti, A., Pecchiari, M., Tirone e, G., Valentini, R. (2002). Severe drought effects on ecosystem CO2 and H2O fluxes at three mediterranean evergreen sites: Revision of current hypotheses? Global Change Biology, 8(10), 999–1017.

    Google Scholar 

  • Rodrigues, A. M. (2002). Fluxos de Momento, Massa e Energia na Camada Limite Atmosférica em Montado de Sobro. Ph.D. Thesis (Environment, Energy profile) Instituto Superior Técnico, U.T.L., Lisbon, 235 pp. [in portuguese].

    Google Scholar 

  • Rodrigues, A. M., Oliveira, H. (2006). Sequestro de Carbono, Tendências Globais e Perspetivas do Sector Florestal Português. Ingenium, II Série, 92, 68–71. [in portuguese]

    Google Scholar 

  • Rodrigues, A., Pita, G., Mateus, J., Kurz-Besson, C., Casquilho, M., Cerasoli, S., et al. (2011). Eight years of continuous carbon fluxes measurements in a portuguese eucalypt stand under two main events: drought and felling. Agricultural and Forest Meteorology, 151, 493–507.

    Article  Google Scholar 

  • Shaw, R. C (1995). Statistical description of turbulence. Lecture 9, in: Advanced Short Course on Biometeorology and Micrometeorology. Università di Sassari, Italia.

    Google Scholar 

  • Shaw, R. H., Hartog, G. D., & Neumann, H. H. (1988). Influence of foliar density and thermal stability on profiles of reynolds stress and turbulence intensity in a deciduous forest. Boundary Layer Meteorology, 45, 391–409.

    Article  Google Scholar 

  • Shaw, R. H., U. Paw, K. T., Zhang, X. J., Gao, W., Hartog, G., & Den Neumann, H. H. (1990). Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest. boundary layer. Meteorology 50, 319–338.

    Google Scholar 

  • Shuttlewortth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C., Roberts, J., Filho, A. O. M., Fisch, G., Filho V de, P.S., Ribeiro, M. N. G., Molion, L. C. B., Sá, L. D. A., Nobre, J. C. A., Cabral, O. M. R., Patel, S. R., & Moraes, J.C. (1984). Eddy correlation measurements of energy partition for amazonian forest. Quarterly Journal of the Royal Meteorological Society, 110, 1143–1162.

    Google Scholar 

  • Stewart, J. B., & Thom, A. S. (1973). Energy budgets in pine forest. Quarterly Journal of the Royal Meteorological Society, 99, 154–170.

    Article  Google Scholar 

  • Stewart, J. B., & de Bruin, H. A. R. (1985). Preliminary study of dependence of surface conductance of thetford forests on environmental conditions, pp. 91–104. In B. A. Hutchinson, B. B. Hichs (Eds.). The Forest-Atmosphere Interaction. Reidel Publishing Company

    Google Scholar 

  • Tan, C. S., & Black, T. A. (1976). Factors affecting the canopy resistance of a Douglas-Fir forest. Boundary Layer Meteorology, 10, 475–488.

    Article  Google Scholar 

  • Tani, N. (1963). The wind over the cultivated field. Bulletin of the National Institute of Agricultural, Science, Tokyo A 10, 99.

    Google Scholar 

  • Tenhunen, J. D., Lange, O. L., Harley, P. C., Beyschlag, W., Meyer, A., e David, M. M. (1985). Limitations due to water stress of leaf net photosynthesis of Quercus Coccifers in the Portuguese evergreen scrub. Oecologia, 67, 23–30.

    Google Scholar 

  • Vogt, R., & Jaeger, L. (1990). Evaporation from a pine forest-using the aerodynamic method and bowen ratio method. Agriculture and Forest Meteorology, 50, 39–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Rodrigues .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, A., Sardinha, R.A., Pita, G. (2021). Exchange of Energy and Mass Over Forest Canopies. In: Fundamental Principles of Environmental Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-69025-0_4

Download citation

Publish with us

Policies and ethics