Skip to main content

Characterization of Turbulent Flow in the Surface Boundary Layer

  • Chapter
  • First Online:
Fundamental Principles of Environmental Physics

Abstract

This chapter aimed to make a characterization of turbulent airflow in the surface boundary layer, following qualitative and quantitative approaches. The former is based on a generalization of Navier–Stokes equations, applied to flow mean and fluctuation components, for obtaining budgets of vectorial and scalar quantities. The latter is based on similarity relationships dependent on atmospheric stability for evaluation of the components of kinetic energy budget equations. A spectral and cospectral frequency characterization of the turbulent flow, aiming to analyze the spectral structure of production, transport, inertial and dissipative scales was performed, grounded on a brief introduction on fundamentals of Fourier analysis. Comparison of measured and calculated spectra following empirical similarity principles, particularly in slopes of curves in the inertial region, is fundamental for quality control assessment of atmospheric measurements and for evaluation of turbulent dynamics under distinct atmospheric stability conditions. The assessment of the power spectrum, autocorrelation, and cross-correlation functions enhances the potential of frequency analysis of predominant turbulent eddies. Finally, a discussion is presented about eddy covariance methodology to obtain vertical fluxes, with measurements of fluctuations of scalar and vectorial quantities. The methodology is applied under turbulent transport frequencies, considering quality control proceedings and applications on local carbon budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., et al. (2000). Estimates of the annual net carbon and water exchange of forests: The Euroflux methodology. Advances in Ecological Research, 30, 113–175.

    Article  CAS  Google Scholar 

  • Baldocchi, D. D. (1995). Instrumentation III (Open and Closed Path CO2 and Water Vapor Sensors), Lecture 12. In Advanced Short Course on Biometeorology and Micrometeorology, Università di Sassari, Italia.

    Google Scholar 

  • Bendat, J., & Piersol, A. J. (1971). Random data: Analysis and measurement procedures. Wiley, 407 pp.

    Google Scholar 

  • Blackadar, A. K. (1997). Turbulence and diffusion in the atmosphere. Springer, 185 pp.

    Google Scholar 

  • Burba, G., & Anderson, D. (2010). A Brief Practical Guide to Eddy Covariance Flux Measurements. LI-COR Biosciences, 213 pp.

    Google Scholar 

  • Burba, G., McDermit, D. K., Grelle, A., Anderson, D. J., & e Xu, L. (2008). Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology, 14(8), 1854–1876.

    Google Scholar 

  • Businger, J. A., Wingaard, J. C., Izumi, Y., & Bradley, E. F. (1971). Flux profile relationships in the Atmospheric surface layer. Journal of the Atmospheric Sciences, 28, 181–189.

    Article  Google Scholar 

  • Chapra, S. C., & Canale, R. P. (1989). Numerical methods for engineers, 2nd edn, 813 pp.

    Google Scholar 

  • Foken, T. (2017). Micrometeorology, 2nd edn, Springer, Berlin, 362 pp.

    Google Scholar 

  • Foken, T., & Wichura, B. (1996). Tools for quality assessing of surface-based flux measurements. Agricultural and Forest Meteorology, 78, 83–105.

    Article  Google Scholar 

  • Fox, R. W., & McDonald A. T. (1985). Introduction to fluid mechanics. Wiley, 742 pp.

    Google Scholar 

  • Gash, J. H. C., & Gulf, A. D. (1996). Applying a linear detrend to eddy correlation data in real time. Boundary Layer Meteorology, 79, 301–306.

    Article  Google Scholar 

  • Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., Bernhofer, C., et al. (2008). Quality control of CarboEurope flux data. Part 1. Coupling footprint Analyses with flux Data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5, 433–450.

    Google Scholar 

  • Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric boundary layer flows (p. 289). Their Structure and Measurement: Oxford University Press.

    Book  Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., & Coté, O. R. (1972). Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98, 563–589.

    Article  Google Scholar 

  • Laubach, J., Raschendorfer, M., Kreilein, H., & Gravenhorst, G. (1994). Determination of heat and water vapour fluxes above a spruce forest by eddy correlation. Agricultural and Forest Meteorology, 71, 373–401.

    Article  Google Scholar 

  • Lee, X., Massman, W., & Law, B. (2004). Handbook of micrometeorology, Atmospheric and oceanographic sciences library, Vol. 29, Kluwer Academic Publishers, 251 pp.

    Google Scholar 

  • Leuning, R., Denmead, O. T., Lang, R. G., & Ohtaki, E. (1982). Effects of heat and water vapor transport on eddy covariance measurement of CO2 fluxes. Boundary Layer Meteorology, 23, 209–222.

    Article  Google Scholar 

  • Lynn, P. A., & Fuerst, W. (1998). Introductory signal processing with computer applications, 2nd ed, Wiley, 479 pp.

    Google Scholar 

  • Mauder, M., & Foken, T. (2004). Quality control of eddy covariance measurements. CarboEurope-IP Task 1.2.2 (C:0,1,2).

    Google Scholar 

  • Moncrieff, J. B., Massheder, J. M., de Bruin, H., Helbers, J., Friborg, T., Heuinkveld, B., Kabat, P., Scott, S., Soegaard, H., & Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon Dioxide. Journal of Hydrology 188–189 and 589–611.

    Google Scholar 

  • Moore, C. J. (1986). Frequency response corrections for eddy correlation systems. Boundary Layer Meteorology, 37, 17–35.

    Article  Google Scholar 

  • Morrison, N. (1994). Introduction to fourier analysis. Wiley, 562 pp.

    Google Scholar 

  • Oke, T. R. (1992). Boundary layer climates, 2nd ed., Routledge, 435 pp.

    Google Scholar 

  • Panofsky, H. A., & Dutton, J. A. (1984). Atmospheric turbulence (p. 397). Models and Methods for Engineering Applications: Wiley.

    Google Scholar 

  • Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., et al. (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences, 3, 571–583.

    Article  CAS  Google Scholar 

  • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., & Berbigier, P. et al. (2005). On the separation of net rcosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439.

    Google Scholar 

  • Rodrigues, A. M. (2002). Fluxos de Momento, Massa e Energia na Camada Limite Atmosférica em Montado de Sobro. Ph.D. Thesis (Environment, Energy profile) Instituto Superior Técnico, U.T.L., Lisbon, 235 pp. [in portuguese].

    Google Scholar 

  • Schotanus, E. K., Nieuwstadt, F. T. M., & de Bruin, H. A. R. (1983). Temperature measurement with a Sonic Anemometer and its application to heat and moisture flux. Boundary-Layer Meteorology, 26, 81–93.

    Article  Google Scholar 

  • Schuepp, P. H., Leclerc, M. Y., Macpherson, J. I., & Desjardins, R. L. (1990). Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorology, 50, 355–373.

    Article  Google Scholar 

  • Shaw, R. (1995a). Statistical description of turbulence, Lecture 7. In Advanced Short Course on Biometeorology and Micrometeorology, Università di Sassari, Italia.

    Google Scholar 

  • Shaw, R. (1995b). Turbulent kinetic energy and atmospheric stability, Lecture 8. In Advanced Short Course on Biometeorology and Micrometeorology. Università di Sassari, Italia.

    Google Scholar 

  • Shaw, R. (1995c). Surface layer similarity. Lecture 10. In Advanced Short Course on Biometeorology and Micrometeorology. Università di Sassari, Italia.

    Google Scholar 

  • Shaw, R. (1995d). Instrumentation I (Response Characteristics, Vector Wind Sensors). Lecture 13. In Advanced Short Course on Biometeorology and Micrometeorology. Università di Sassari, Italia.

    Google Scholar 

  • Stearns, S. D., & Hush, D. R. (1990). Digital signal analysis, 2nd edn. Prentice-Hall International, Inc., 441 pp.

    Google Scholar 

  • Stull, R. S. (1994). An introduction to boundary layer meteorology. Kluwer Academic Publishers, 666 pp.

    Google Scholar 

  • Tennekes, H., & Lumley, J. L. (1980). A first course in turbulence. MIT Press, 300 pp.

    Google Scholar 

  • Valente, F. M. R. T. (1999). Intercepção da Precipitação em Povoamentos Esparsos. Modelação do Processo e Características Aerodinâmicas dos Cobertos Molhados. Ph.D. Thesis, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisbon, (in portuguese).

    Google Scholar 

  • Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85–100.

    Article  Google Scholar 

  • Willis, G. E., & e Deardorff, J. W. (1976). On the use of Taylor´s translation hypothesis for diffusion in the mixed layer. Quaterly Journal of the Royal Meteorological Society, 102, 817–822.

    Google Scholar 

  • Wyngaard, J. C. (1981). The effects of probe-induced flow distortion on atmospheric turbulence measurements. Journal of Applied Meteorology, 20, 784–794.

    Article  Google Scholar 

  • Wyngaard, J. C. (1988). Flow distortion effects on scalar flux measurements in the surface layer: Implications for sensor design. Boundary Layer Meteorology, 42, 19–26.

    Article  Google Scholar 

  • Wyngaard, J. C., & Coté, O. R. (1972). The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. Journal of the Atmospheric Science, 28, 190–201.

    Article  Google Scholar 

  • Wyngaard, J. C., Coté, O. R., & Izumi, Y. (1971). Local free convection, similarity, and the budgets of shear stress and heat flux. Journal of the Atmospheric Sciences, 28, 1171–1182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Rodrigues .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, A., Sardinha, R.A., Pita, G. (2021). Characterization of Turbulent Flow in the Surface Boundary Layer. In: Fundamental Principles of Environmental Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-69025-0_3

Download citation

Publish with us

Policies and ethics