Skip to main content

Traversable Irregularity

  • Chapter
  • First Online:
Irregularity in Graphs

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 398 Accesses

Abstract

An Eulerian circuit in a connected graph G is a circuit that contains every edge of G exactly once while an Eulerian walk in G is a closed walk that contains every edge of G at least once. While only Eulerian graphs contain an Eulerian circuit, every nontrivial connected graph contains an Eulerian walk. The irregularity concept here is an irregular Eulerian walk in G, which is an Eulerian walk where no two edges of G are encountered the same number of times. The irregularity counterpart for vertices is a Hamiltonian walk. These are the primary topics for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Andrews, G. Chartrand, C. Lumduanhom, P. Zhang, On Eulerian walks in graphs. Bull. Inst. Combin. Appl. 68, 12–26 (2013)

    MathSciNet  Google Scholar 

  2. E. Andrews, C. Lumduanhom, P. Zhang, On irregular Eulerian Walks in circulants. Congr. Numer. 217, 33–52 (2013)

    MathSciNet  MATH  Google Scholar 

  3. E. Andrews, C. Lumduanhom, P. Zhang, On Eulerian irregularity in graphs. Discuss. Math. Graph Theory. 34, 391–408 (2014)

    Article  MathSciNet  Google Scholar 

  4. E. Andrews, C. Lumduanhom, P. Zhang, On Eulerian irregularities of prisms, grids and powers of cycles. J. Combin. Math. Combin. Comput. 90, 167–184 (2014)

    MathSciNet  MATH  Google Scholar 

  5. G. Chartrand, T. Thomas, V. Saenpholphat, P. Zhang, A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42, 37–52 (2004)

    MathSciNet  MATH  Google Scholar 

  6. L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. I. Petropolitanae 8, 128–140 (1736)

    Google Scholar 

  7. S. E. Goodman, S. T. Hedetniemi, Eulerian walks in graphs. SIAM J. Comput. 2, 16–27 (1973)

    Article  MathSciNet  Google Scholar 

  8. S.E. Goodman, S.T. Hedetniemi, On Hamiltonian walks in graphs. Congr. Numer. 335–342 (1973)

    Google Scholar 

  9. S.E. Goodman, S.T. Hedetniemi, On Hamiltonian walks in graphs. SIAM J. Comput. 3, 214–221 (1974)

    Article  MathSciNet  Google Scholar 

  10. S.T. Hedetniemi, On minimum walks in graphs. Naval Res. Logist. Q. 15, 453–458 (1968)

    Article  MathSciNet  Google Scholar 

  11. M.K. Kwan, Graphic programming using odd or even points. Acta Math. Sin. 10, 264–266 (1960) (Chinese); translated as Chin. Math. 1, 273–277 (1960)

    Google Scholar 

  12. O. Ore, Graphs and Their Uses (Random House, New York, 1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, A., Chartrand, G., Zhang, P. (2021). Traversable Irregularity. In: Irregularity in Graphs. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-67993-4_7

Download citation

Publish with us

Policies and ethics