Skip to main content

Toward Molecular Mechanisms of Solar Water Splitting in Semiconductor/Manganese Materials and Photosystem II

  • Chapter
  • First Online:
Photosynthesis: Molecular Approaches to Solar Energy Conversion

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 47))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Concepcion JJ, …, Meyer TJ (2013) Solar water splitting in a molecular photoelectrochemical cell. Proc Natl Acad Sci U S A 110:20008–20013

    Google Scholar 

  • Baffert C, Romain S, Richardot A, Lepretre JC, Lefebvre B, Deronzier A, Collomb MN (2005) Electrochemical and chemical formation of [Mn4(IV)O5(terpy)4(H2O)2]6+, in relation with the photosystem II oxygen-evolving center model [Mn2(III,IV)O2(terpy)2(H2O)2]3+. J Am Chem Soc 127:13694–13704

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  PubMed  Google Scholar 

  • Birkner N, Nayeri SN, Pashaei B, Najafpour MM, Casey WH, Navrotsky A (2013) Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. Proc Natl Acad Sci U S A 110:8801–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakemore JD, Crabtree RH, Brudvig GW (2015) Molecular catalysts for water oxidation. Chem Rev 115:12974–13005

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, …, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Google Scholar 

  • Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57:37–50

    Article  CAS  Google Scholar 

  • Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47:7335–7338

    Article  CAS  Google Scholar 

  • Brimblecombe R, Dismukes GC, Swiegers GF, Spiccia L (2009) Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Trans 43:9374–9384

    Article  CAS  Google Scholar 

  • Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar-driven water oxidation by a bio-inspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894

    Article  CAS  PubMed  Google Scholar 

  • Brudvig GW (2008) Water oxidation chemistry of photosystem II. Philos Trans R Soc B 363:1211–1219

    Article  CAS  Google Scholar 

  • Cady CW, Brudvig GW (2008) Functional manganese model chemistry relevant to the oxygen-evolving complex of photosystem II: oxidation of a Mn(III,IV) complex coupled to deprotonation of a terminal water ligand. In: Allen JP, Osmond B, Golbeck GH, Gantt E (eds) Photosynthesis: Energy from the Sun. Springer, Dordrecht, pp 377–382

    Chapter  Google Scholar 

  • Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cady CW, Shinopoulos KE, Crabtree RH, Brudvig GW (2010) [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltammetry. Dalton Trans 39:3985–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou LY, Liu R, He W, Geh N, Lin Y, Hou EYF, Wang D, Hou HJM (2012) Direct oxygen and hydrogen production by water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. Int J Hydrog Energy 37:8889–8896

    Article  CAS  Google Scholar 

  • Collomb MN, Deronzier A, Pradon X, Menage S, Philouze C (1997) Electrochemical interconversion of mono-, bi-, and tetranuclear (bipyridyl) manganese complexes in buffered aqueous solution. J Am Chem Soc 119:3173–3174

    Article  Google Scholar 

  • Collomb MN, Deronzier A, Piron A, Pradon X, Menage S (1998) New chemical and electrochemical synthesis of the [Mn4IVO6(bpy)6]4+ cluster: electrochemical interconversion with corresponding bi- and mononuclear complexes. J Am Chem Soc 120:5373–5380

    Article  Google Scholar 

  • Collomb MN, Deronzier A, Piron A (1999a) Electrochemical behaviour of [Mn2III,IVO2(phen)4]3+ complex in aqueous phen+phenH+ buffer; phen=1,10-phenanthroline. J Electroanal Chem 463:119–122

    Article  Google Scholar 

  • Collomb MN, Deronzier A, Richardot A, Pecaut J (1999b) Synthesis and characterization of a new kind of Mn2III,IV μ-oxo complex: [Mn2O2(terpy)2(H2O)2](NO3)3·6H2O, terpy= 2,2′:6′,2″-terpyridine. New J Chem 23:351–354

    Article  CAS  Google Scholar 

  • Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami-Iha NY, Templeton JL, Meyer TJ (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Daniel G (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Dogutan DK, Nocera DG (2019) Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc Chem Res 52:3143–3148

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  • Geletii YV, Botar B, Kogerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chem Int Ed 47:3896–3899

    Article  CAS  Google Scholar 

  • Gersten SW, Samuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4030

    Article  CAS  Google Scholar 

  • Han Z, Qiu F, Eisenberg R, Holland RL, Krauss TD (2012) Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338:1321–1324

    Article  CAS  PubMed  Google Scholar 

  • He W, Zhao KH, Hou HJM (2013) Toward solar fuel production using manganese/semiconductor systems to mimic photosynthesis. Nano Photo Bio Sci 1:63–78

    Google Scholar 

  • Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956

    Article  CAS  PubMed  Google Scholar 

  • Hou HJM (2010) Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential application in solar fuel production. J Integr Plant Biol 52:704–711

    Article  CAS  PubMed  Google Scholar 

  • Hou HJM (2011) Manganese-based materials inspired by photosynthesis for water-splitting. Materials 4:1693–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centres photochimiques du systém II. Photochem Photobiol 10:309–329

    Article  CAS  Google Scholar 

  • Kanan M, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Google Scholar 

  • Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114

    Article  CAS  PubMed  Google Scholar 

  • Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc 132:13692–13701

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Chatterjee R, Young ID, Fuller FD, Lassalle L, Ibrahim M, Gul S, …, Yachandra VK (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425

    Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475

    Article  CAS  PubMed  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Sproviero EM, Snoeberger IIIRC, Iguchi N, Blakemore JD, Crabtree RH, Brudvig GW, Batista VS (2009) Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy Environ Sci 2:230–238

    Article  CAS  Google Scholar 

  • Li W, Sheehan SW, He D, He Y, Yao X, Grimm RL, Brudvig GW, Wang D (2015) Hematite-based solar water splitting in acidic solutions: functionalization by mono- and multi-layers of Ir oxygen-evolution catalysts. Angew Chem Int Ed 54:11428–11432

    Article  CAS  Google Scholar 

  • Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • Limburg J, Vrettos JS, Chen H, de Paula JC, Crabtree RH, Brudvig GW (2001) Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)Mn(III)(O)2Mn(IV)(OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine). J Am Chem Soc 123:423–430

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Zhou S, Liu X, Sheehan S, Wang D (2009) TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting. J Am Chem Soc 131:2772–2773

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Concepcion JJ, Jurss JW, Cardolaccia T, Templeton JL, Meyer TJ (2008) Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg Chem 47:1727–1752

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lin Y, Chou LY, Sheehan SW, He W, Zhang F, Hou HJM, Wang D (2011) Water splitting by tungsten oxide prepared by atomic layer deposition and decoraed with an oxygen-evolving catalyst. Angew Chem Int Ed 50:499–502

    Article  CAS  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131:3838–3839

    Article  CAS  PubMed  Google Scholar 

  • Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming junctions at the nanoscale for improved water splitting by seminconductor materials: case studies of hematite. Acc Chem Res 46:1558–1566

    Article  CAS  PubMed  Google Scholar 

  • McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132:6882–6883

    Article  CAS  PubMed  Google Scholar 

  • McDaniel ND, Coughlin FJ, Tinker LL, Bernhard S (2008) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP, Gascon JA, Batista VS, Brudvig GW (2005) The mechanism of photosynthetic water splitting. Photochem Photobiol Sci 4:940–949

    Article  CAS  PubMed  Google Scholar 

  • McNamara WR, Snoeberger III RC, Li G, Richter C, Allen LJ, Milot RL, Schmuttenmaer CA, …, Batista VS (2009) Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy Environ Sci 2:1173–1175

    Google Scholar 

  • Meyer TJ (2008) The art of splitting water. Nature 451:778–779

    Article  CAS  PubMed  Google Scholar 

  • Moore GF (2017) Concluding remarks and future perspectives: looking back and moving forward. In: Hou HJM, Najafpour MM, Moore GF, Allakhverdiev SI (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Dordrecht, pp 407–414

    Chapter  Google Scholar 

  • Najafpour MM, Abasi M, Allakhverdiev SI (2013) Recent proposed mechanisms for biological water oxidation. Nano Photo Bio Sci 1:79–92

    Google Scholar 

  • Najafpour MM, Hou HJM, Allakhverdiev SI (2017) Photosynthesis: natural nanomachines toward energy and food production. In: Hou HJM, Najafpour MM, Moore GF, Allakhverdiev SI (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Dordrecht, pp 1–9

    Google Scholar 

  • Najafpour MM, Zaharieva I, Zand Z, Maedeh Hosseini S, Kouzmanova M, Hołyńska M, Tranca I, …, Allakhverdiev SI (2020) Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 409:213183

    Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  PubMed  Google Scholar 

  • Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2012) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648

    Article  CAS  Google Scholar 

  • Rivalta I, Brudvig GW, Batista VS (2012) Oxomanganese complexes for natural and artificial photosynthesis. Curr Opinion Chem Biol 16:11–18

    Article  CAS  Google Scholar 

  • Ruettinger WF, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97:1–24

    Article  CAS  Google Scholar 

  • Ruettinger WF, Campana C, Dismukes GC (1997) Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: a new class of models of the active site of the photosynthetic water oxidase. J Am Chem Soc 119:6670–6671

    Article  CAS  Google Scholar 

  • Ruettinger WF, Yagi M, Wolf K, Bernasek S, Dismukes GC (2000) O2 evolution from the manganese-oxo cubane core Mn4O46+: a molecular mimic of the photosynthetic water oxidation enzyme. J Am Chem Soc 122:10353–10357

    Article  CAS  Google Scholar 

  • Sala X, Romero I, Rodriguez M, Escriche L, Llobet A (2009) Molecular catalysts that oxidize water to dioxygen. Angew Chem Int Ed 48:2842–2852

    Article  CAS  Google Scholar 

  • Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [gamma-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J Am Chem Soc 130:5006–5007

    Article  CAS  PubMed  Google Scholar 

  • Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Ann Rev Plant Biol 66:23–48

    Article  CAS  Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J Am Chem Soc 130:3428–3442

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, …, Shen JR (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Google Scholar 

  • Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, …, Shen JR (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135

    Google Scholar 

  • Suga M, Akita F, Yamashita K, Nakajima Y, Ueno G, Li H, Yamane T, …, Shen JR (2019) An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366:334–338

    Google Scholar 

  • Surendranath Y, Dinca M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131:2615–2620

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Brudvig GW, Batista VS (2010) Study of proton coupled electron transfer in a biomimetic dimanganese water oxidation catalyst with terminal water ligands. J Chem Theory Comput 6:2395–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhouse M, Parkinson BA (2008) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38:197–210

    Article  PubMed  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, …, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Google Scholar 

  • Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, …, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345

    Google Scholar 

  • Young KJ, Gao Y, Brudvig GW (2011) Photocatalytic water oxidation using manganese compounds immobilized in nafion polymer membranes. Austral J Chem 64:1219–1226

    Article  CAS  Google Scholar 

  • Young KJ, Martini LA, Milot RL, Snoeberger R, Batisa VS, Schmuttenmaer C, Crabtree RH, Brudvig GW (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256:2503–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young KJ, Brennan BJ, Tagore R, Brudvig GW (2015) Photosynthetic water oxidation: insights from manganese model chemistry. Accts Chem Res 48:567–574

    Article  CAS  Google Scholar 

  • Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Accts Chem Res 42:1966–1973

    Article  CAS  Google Scholar 

  • Zhang F, Cady CW, Brudvig GW, Hou HJM (2011) Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy = 2,2′:6′,2″-terpyridine) in aqueous solution. Inorg Chim Acta 366:128–133

    Article  CAS  Google Scholar 

  • Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst “Co-Pi”/gama-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey J. M. Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, H.J.M. (2021). Toward Molecular Mechanisms of Solar Water Splitting in Semiconductor/Manganese Materials and Photosystem II. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_4

Download citation

Publish with us

Policies and ethics