Skip to main content

Perception of State Transition in Photosynthetic Organisms

  • Chapter
  • First Online:
Photosynthesis: Molecular Approaches to Solar Energy Conversion

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 47))

  • 1408 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonso M, Perewoska I, Kirilovsky D (2000) Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b6/f complex. Plant Physiol 122:505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation, new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29

    Article  CAS  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Andersson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Giacometti GM, Simpson DJ (1988) Changes in the organization of stroma membranes induced by in vivo state 1-state 2 transition. Biochim Biophys Acta 935:152–165

    Article  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346 https://doi.org/10.1038/269344a0

  • Bennett J (1984) Thylakoid protein phosphorylation: In vitro and in vivo. Biochem Soc Trans 12:771–774

    Article  CAS  PubMed  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci U S A 77:5253–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci U S A 79:4352–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla P, Bennett J (1987) Chloroplast phosphoproteins: phosphorylation of a 12- kDa stromal protein by the redox-controlled kinase of thylakoid. Arch Biochem Biophys 252:97–104

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL, Dekker JP (1999) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. European Journal of Biochemistry 266 (2):444–452

    Google Scholar 

  • Bonardi V et al. (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases Nature 437:1179–1182 https://doi.org/10.1038/nature04016

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Frankel LK (2002) The structure and function of CP47 and CP43 in photosystem II. Photosynth Res 72:131–146

    Article  CAS  PubMed  Google Scholar 

  • Bukhov N, Carpentier R (2004) Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33

    Article  CAS  PubMed  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canaani O, Schuster G, Ohad I (1989) Photoinhibition in Chlamydomonas reinhardtii: effect on state transition, intersystem energy distribution and Photosystem I cyclic electron flow. Photosynth Res 20:129–146

    Article  CAS  PubMed  Google Scholar 

  • Caspy I, Nelson N (2018) Structure of the plant photosystem I. Biochem Soc Trans 46:285–294

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Guedeney G, Joët T, Rumeau D, Latouche G, Cerovic Z, Redding K, Horvath E, Medgyesy P, Peltier G (1998) Non-photochemical eduction of intersystem electron carriers in chloroplasts of higher plants and algae. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol III. Springer, Dordrecht, pp 1877–1882

    Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Canino G, Ros F, Bassi R (2002) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41:7334–7343

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Barber J (1997) Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:8897–8903

    Article  PubMed  Google Scholar 

  • Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158

    Article  Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284:4148–4157

    Article  CAS  PubMed  Google Scholar 

  • Ferrante P, Ballottari M, Bonente G, Giuliano G, Bassi R (2012) LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii. J Biol Chem 287:16276–16288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindjee, Shevela D, Björn LO (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 133:5–15

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA, Allen JF (1991) Light-dependent phosphorylation of photosystem II polypeptides maintains electron transport at high light intensity: separation from effects of phosphorylation of LHC-II. Biochim Biophys Acta 1058:289–296

    Article  CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of Photosystem I to heat stress: induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47:85–97

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Bendall FAY (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186:136–137

    Article  CAS  Google Scholar 

  • Horton P (1996) Nonphotochemical quenching of chlorophyll fluorescence. In: Jennings RC, Zucchelli G, Ghetti F, Colombetti G (eds) Light as an energy source and information carrier in plant physiology. Springer, Boston, pp 99–111

    Google Scholar 

  • Iwai M, Takahashi Y, Minagawa J (2008) Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20:2177–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010a) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Yokono M, Inada N, Minagawa J (2010b) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci U S A 107:2337–2342

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    Article  CAS  PubMed  Google Scholar 

  • Jensen PE, Haldrup A, Zhang S, Scheller HV (2004) The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem 279:24212–24217

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kargul J, Barber J (2008) Photosynthetic acclimation: structural reorganisation of light harvesting antenna: role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J 275:1056–1068

    Article  CAS  PubMed  Google Scholar 

  • Kargul J, Turkina MV, Nield J, Benson S, Vener AV, Barber J (2005) Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J 272:4797–4806

    Article  CAS  PubMed  Google Scholar 

  • Karpinska B, Karpinski S, Slesak I, Surówka E, Miszalski Z (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3–CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    Article  PubMed  Google Scholar 

  • Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: Orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126:3–17

    Article  CAS  PubMed  Google Scholar 

  • Kouril R, Lazar D, Ilik P, Skotnica J, Krchnak P, Naus J (2004) High-temperature induced chlorophyll fluorescence rise in plants at 40-50° C: experimental and theoretical approach. Photosynth Res 81:49–66

    Article  CAS  PubMed  Google Scholar 

  • Kouril R, Zygadlo A, Arteni AA, de Wit CD, Dekker JP, Jensen PE, Scheller HV, Boekema EJ (2005) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44:10935–10940

    Article  CAS  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Kubota-Kawai H, Burton-Smith RN, Tokutsu R, Song C, Akimoto S, Yokono M, Ueno Y, Kim E, Watanabe A, Murata K, Minagawa J (2019) Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. J Biol Chem 294:4304–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle DJ, Staehelin LA, Arntzen CJ (1983) Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch Biochem Biophys 222:527–541

    Article  CAS  PubMed  Google Scholar 

  • Lemeille S, Willig A, Depege-Fargeix N, Delessert C, Bassi R, Rochaix JD (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 7:e45

    Article  PubMed  CAS  Google Scholar 

  • Lemeille S, Turkina MV, Vener AV, Rochaix JD (2010) Stt7-dependent phosphorylation during state transitions in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 9:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madireddi SK, Nama S, Devadasu E, Subramanyam R (2019) Thylakoid membrane dynamics and state transitions in Chlamydomonas reinhardtii under elevated temperature. Photosynth Res 139:215–226

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem I supercomplex at 2.6 Ã… resolution. Nat Plants 3:17014

    Google Scholar 

  • Minagawa J (2011) State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J, Takahashi Y (2004) Structure, function and assembly of Photosystem II and its light-harvesting proteins. Photosynth Res 82:241–263

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J, Tokutsu R (2015) Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. Plant J 82:413–428

    Article  CAS  PubMed  Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Ãœnnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci U S A 111:5042–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki WJ, Santabarbara S, Mosebach L, Wollman FA, Rappaport F (2016) State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nat Plants 2:16031

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli S, Mekala NR, Zsiros O, Mohanty P, Subramanyam R (2011) Moderate heat stress induces state transitions in Arabidopsis thaliana. Biochim Biophys Acta 1807:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R (2012) Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS One 7:e49839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nellaepalli S, Kodru S, Raghavendra AS, Subramanyam R (2015) Antimycin a sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. J Photochem Photobiol B 146:24–33

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Kruse O, Ruprecht J, da Fonseca P, Buchel C, Barber J (2000a) Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J Biol Chem 275:27940–27946

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M, Barber J (2000b) 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7:44–47

    Article  CAS  PubMed  Google Scholar 

  • Nilkens M, Kress E, Lambrev P, Miloslavina Y, Muller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB, Foyer CH, Bock G, Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philos Trans R Soc Lond Ser B Biol Sci 355:1351–1359

    Article  Google Scholar 

  • Ozawa SI, Bald T, Onishi T, Xue H, Matsumura T, Kubo R, Takahashi H, Hippler M, Takahashi Y (2018) Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. Plant Physiol 178:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  CAS  PubMed  Google Scholar 

  • Peltier G, Tolleter D, Billon E, Cournac L (2010) Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 106:19–31

    Article  CAS  PubMed  Google Scholar 

  • Pi X, Tian LR, Dai HE, Qin X, Cheng L, Kuang T, Sui SF, Shen JR (2018) Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci U S A 115:4423–4428

    Google Scholar 

  • Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26:3646–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D (2010) Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol 8:e1000288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puthiyaveetil S, Woodiwiss T, Knoerdel R, Zia A, Wood M, Hoehner R, Kirchhoff H (2014) Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes. Plant Cell Physiol 55:1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Suga M, Kuang TY, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Qin XC, Pi X, Wang WD, Han G, Zhu L, Liu M, Cheng L, Shen JR, Kuang T, Sui SF (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5:263–272

    Google Scholar 

  • Rechtsteiner GA, Ganske JA (1998) Using natural and artificial light sources to illustrate quantum mechanical concepts. Chem Edu 3:1–12

    Article  Google Scholar 

  • Reiland S, Finazzi G, Endler A, Willig A, Baerenfaller K, Grossmann J, Gerrits B, Rutishauser D, Gruissem W, Rochaix JD, Baginsky S (2011) Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc Natl Acad Sci U S A 108:12955–12960

    Google Scholar 

  • Rochaix JD (2013) Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid Redox Signal 18:2184–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochaix JD (2016) State transition kinases and redox signal transduction in chloroplasts. In: Cramer WA, Kallas T (eds) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Springer, Dordrecht, pp 463–477

    Google Scholar 

  • Sandona D, Croce R, Pagano A, Crimi M, Bassi R (1998) Higher plants light harvesting proteins: structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365:207–214

    Article  CAS  PubMed  Google Scholar 

  • Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F, Rochaix JD, Vener AV (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci U S A 107:4782–4787

    Google Scholar 

  • Shen L, Huang Z, Chang S, Wang W, Wang J, Kuang T, Han G, Shen JR, Zhang X (2019) Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 116:21246–21255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  CAS  PubMed  Google Scholar 

  • Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357:815–820

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam R, Jolley C, Brune DC, Fromme P, Webber AN (2006) Characterization of a novel Photosystem I-LHCI supercomplex isolated from Chlamydomonas reinhardtii under anaerobic (State II) conditions. FEBS Lett 580:233–238

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Qin X, Kuang TY, Shen JR (2016) Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. Curr Opin Struct Biol 39:46–53

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Okegawa Y, Tohri A, Long TA, Covert SF, Hisabori T, Shikanai T (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant Cell Physiol 54:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 103:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    Article  PubMed  CAS  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    Article  CAS  Google Scholar 

  • Tikkanen M, Nurmi M, Kangasjarvi S, Aro EM (2008) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 1777:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Tokutsu R, Kato N, Bui KH, Ishikawa T, Minagawa J (2012) Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii. J Biol Chem 287:31574–31581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV (2006) Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 5:1412–1425

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ã…. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Unlu C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 111:3460–3465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vainonen JP, Hansson M, Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280:33679–33686

    Article  CAS  PubMed  Google Scholar 

  • Vainonen JP, Sakuragi Y, Stael S, Tikkanen M, Allahverdiyeva Y, Paakkarinen V, Aro E, Suorsa M, Scheller HV, Vener AV, Aro EM (2008) Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, van Kannn PJM, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci U S A 94:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vener AV, Ohad I, Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr Opin Plant Biol 1:217–223

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Ã… resolution. Nature 534:69–74

    Google Scholar 

  • Wientjes E, Drop B, Kouril R, Boekema EJ, Croce R (2013) During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 288:32821–32826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunder T, Liu Q, Aseeva E, Bonardi V, Leister D, Pribil M (2013) Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. Planta 237:541–558

    Article  CAS  PubMed  Google Scholar 

  • Yang DH, Andersson B, Aro EM, Ohad I (2001) The redox state of the plastoquinone pool controls the level of the light-harvesting chlorophyll a/b binding protein complex II (LHC II) during photoacclimation. Photosynth Res 68:163–174

    Article  CAS  PubMed  Google Scholar 

  • Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA (1999) The Qo site of cytochrome b6 f complexes controls the activation of the LHCII kinase. EMBO J 18:2961–2969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Subramanyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramanyam, R., Madireddi, S.K. (2021). Perception of State Transition in Photosynthetic Organisms. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_11

Download citation

Publish with us

Policies and ethics