Skip to main content

The Biology of Dialysis

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

The purpose of this chapter is to provide an overview of several basic principles underlying renal replacement therapies. After a review of uremic solutes, the dialytic solute removal mechanisms (diffusion, convection, and adsorption) broadly applicable to all renal replacement therapies are reviewed. New perspectives on the importance of specific membrane characteristics, including pore size and fiber inner diameter, are discussed. Fluid and mass transfer in peritoneal dialysis are assessed by examining the elements of the system: peritoneal microcirculation, peritoneal membrane, and the dialysate compartment. Finally, the fundamentals of solute removal kinetics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Upadhyay A, Inker LA, Levey AS. Chronic kidney disease: definition, classification, and approach to management. In: Turner NN, et al., editors. Oxford textbook of nephrology. 4th ed. Oxford: Oxford University Press; 2015.

    Google Scholar 

  2. Clark WR, Gao D. Determinants of uremic toxin removal. Nephrol Dial Transplant. 2002;17(Suppl 3):30–4.

    Article  CAS  PubMed  Google Scholar 

  3. Vanholder R, Argiles A, Baurmeister U, et al. Uremic toxicity: present state of the art. Int J Artif Organs. 2001;24:695–725.

    Article  CAS  PubMed  Google Scholar 

  4. Depner TA. Uremic toxicity: urea and beyond. Sem Dial. 2001;14:246–51.

    Article  CAS  Google Scholar 

  5. Clark WR, Gao D. Low-molecular weight proteins in end-stage renal disease: potential toxicity and dialytic removal mechanisms. J Am Soc Nephrol. 2002;13:S41–7.

    Article  CAS  PubMed  Google Scholar 

  6. Chmielewski M, Cohen G, Wiecek A, Carrero JJ. The peptidic middle molecules: is molecular weight doing the trick? Semin Nephrol. 2014;34:118–34.

    Article  CAS  PubMed  Google Scholar 

  7. Carone FA, Peterson DR, Oparil S, Pullman TN. Renal tubular transport and catabolism of proteins and peptides. Kidney Int. 1979;16:271–8.

    Article  CAS  PubMed  Google Scholar 

  8. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D. Renal filtration, transport, and metabolism of low-molecular weight proteins: a review. Kidney Int. 1979;16:251–70.

    Article  CAS  PubMed  Google Scholar 

  9. Sirich TL, Meyer TW, Gondouin B, Brunet P, Niwa T. Protein-bound molecules: a large family with a bad character. Semin Nephrol. 2014;34:106–17.

    Article  CAS  PubMed  Google Scholar 

  10. Vanholder R, Schepers E, Pletinck A, Nagler E, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25:1897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol. 2015;10:2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95:83–123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lowenstein J, Grantham JJ. Residual renal function: a paradigm shift. Kidney Int. 2017;91:561–5.

    Article  PubMed  Google Scholar 

  14. Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 2018;13:1398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark WR, Laal Dehghani N, Narsimham V, Ronco C. New perspectives on extracorporeal renal replacement therapy for end-stage renal disease: (I) uremic toxins. Blood Purif. 2019;48:299–314.

    Article  CAS  PubMed  Google Scholar 

  16. Clark WR. Quantitative characterization of hemodialyzer solute and water transport. Semin Dial. 2001;14:32–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ronco C, Clark WR. Factors affecting hemodialysis and peritoneal dialysis efficiency. Semin Dial. 2001;14:257–62.

    Article  CAS  PubMed  Google Scholar 

  18. Clark WR, Ronco C. Determinants of hemodialyzer performance and the effect on clinical outcome. Nephrol Dial Transplant. 2001;16(Suppl 3):56–60.

    Article  CAS  PubMed  Google Scholar 

  19. Clark WR, Shinaberger JH. Effect of dialysate-side mass transfer resistance on small solute removal in hemodialysis. Blood Purif. 2000;18:260–3.

    Article  CAS  PubMed  Google Scholar 

  20. Clark WR, Hamburger RJ, Lysaght MJ. Effect of membrane composition and structure on performance and biocompatibility in hemodialysis. Kidney Int. 1999;56:2005–15.

    Article  CAS  PubMed  Google Scholar 

  21. Colton CK, Lowrie EG. Hemodialysis: physical principles and technical considerations. In: Brenner BM, Rector FC, editors. The kidney. 2nd ed. Philadelphia: Saunders; 1981. p. 2425–89.

    Google Scholar 

  22. Huang Z, Clark WR, Gao D. Determinants of small solute clearance in hemodialysis. Semin Dial 2005;18:30−35.

    Google Scholar 

  23. Bird RB, Stewart WE, Lightfoot EN. Velocity distributions in laminar flow. In: Bird RB, Stewart WE, Lightfoot EN, editors. Transport phenomena. 1st ed. New York: Wiley; 1960. p. 34–70.

    Google Scholar 

  24. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol. 2018;14:394–410.

    Article  CAS  PubMed  Google Scholar 

  25. Ronco C, Ghezzi PM, Brendolan A, Crepaldi C, La Greca G. The haemodialysis system: basic mechanisms of water and solute transport in extracorporeal renal replacement therapies. Nephrol Dial Transplant. 1998;13(Suppl. 6):3–9.

    Article  CAS  PubMed  Google Scholar 

  26. Villarroel F, Klein E, Holland F. Solute flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Organs. 1977;23:225–32.

    Article  CAS  Google Scholar 

  27. Zydney AL. Bulk mass transport limitations during high-flux hemodialysis. Artif. Organs. 1993;17:919–24.

    Article  CAS  PubMed  Google Scholar 

  28. Lysaght MJ. Hemodialysis membranes in transition. Contrib Nephrol. 1988;61:1–17.

    Article  CAS  PubMed  Google Scholar 

  29. Henderson LW. Biophysics of ultrafiltration and hemofiltration. In: Jacobs C, Kjellstrand C, Koch K, Winchester J, editors. Replacement of renal function by dialysis. Dordrecht: Springer; 1996. p. 114–45.

    Chapter  Google Scholar 

  30. Takeyama T, Sakai Y. Polymethylmethacrylate: one biomaterial for a series of membranes. Contrib Nephrol. 1988;125:9–24.

    Article  Google Scholar 

  31. Bird RB, Stewart WE, Lightfoot EN. In: Bird RB, Stewart WE, Lightfoot EN, editors. Transport phenomena. 1st ed. New York: Wiley; 1960. p. 34–70.

    Google Scholar 

  32. Huang Z, Gao D, Letteri JJ, Clark WR. Blood-membrane interactions during dialysis. Semin Dial. 2009;22:623–8.

    Article  PubMed  Google Scholar 

  33. Langsdorf LJ, Zydney AL. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer model. Blood Purif. 1994;12:292–307.

    Article  CAS  PubMed  Google Scholar 

  34. Morti SM, Zydney AL. Protein-membrane interactions during hemodialysis: effects on solute transport. ASAIO J. 1998;44:319–26.

    Article  CAS  PubMed  Google Scholar 

  35. Rockel A, et al. Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 1986;30:429–432.4.

    Article  CAS  PubMed  Google Scholar 

  36. Henderson LW. Pre vs. post dilution hemofiltration. Clin Nephrol. 1979;11:120–4.

    CAS  PubMed  Google Scholar 

  37. Ofsthun NJ, Zydney AL. Importance of convection in artificial kidney treatment. Contrib Nephrol. 1994;108:53–70.

    Article  CAS  PubMed  Google Scholar 

  38. Kim S. Characteristics of protein removal in hemodiafiltration. Contrib Nephrol. 1994;108:23–37.

    Article  CAS  PubMed  Google Scholar 

  39. Fiore GB, Guadagni G, Lupi A, Ricci Z, Ronco C. A new semiempirical mathematical model for prediction of internal filtration in hollow fiber hemodialyzers. Blood Purif. 2006;24:555–68.

    Article  PubMed  Google Scholar 

  40. Lorenzin A, Neri M, Clark WR, Ronco C. Experimental measurement filtration of internal rate for a new medium cut-off dialyzer. Contrib Nephrol. 2017;191:127–41.

    Article  PubMed  Google Scholar 

  41. Ronco C, Brendolan A, Lupi A, Bettini MC, La Greca G. Enhancement of convective transport by internal filtration in a modified experimental dialyzer. Kidney Int. 1998;54:979–85.

    Article  CAS  PubMed  Google Scholar 

  42. Fiore GB, Ronco C. Principles and practice of internal hemodiafiltration. Contrib Nephrol. 2007;158:177–84.

    Article  PubMed  Google Scholar 

  43. Mineshima M. New trends in HDF: validity of internal filtration-enhanced hemodialysis. Blood Purif. 2004;22(Suppl. 2):60–6.

    Article  PubMed  Google Scholar 

  44. Ronco C, Brendolan A, Lupi A, Metry G, Levin NW. Effects of reduced inner diameter of hollow fibers in hemodialyzers. Kidney Int. 2000;58:809–17.

    Article  CAS  PubMed  Google Scholar 

  45. Ronco C, La Manna G. Expanded hemodialysis: a new therapy for a new class of membranes. Contrib Nephrol. 2017;190:124–33.

    Article  CAS  PubMed  Google Scholar 

  46. Ronco C. The rise of expanded hemodialysis. Blood Purif. 2017;44:I–VIII.

    CAS  PubMed  Google Scholar 

  47. Ward RA. Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J Am Soc Nephrol. 2005;6:2421–30.

    Article  CAS  Google Scholar 

  48. Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013;36:455–63.

    Article  PubMed  CAS  Google Scholar 

  49. Rousseau-Gagnon M, Agharazii M, De Serres SA, Desmeules S. Effectiveness of haemodiafiltration with heat sterilized high-flux polyphenylene HF dialyzer in reducing free light chains in patients with myeloma cast nephropathy. PLoS One. 2015;10:e0140463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jorstad S, Smeby L, Balstad T, Wideroe T. Removal, generation, and adsorption of beta-2-microglobulin during hemofiltration with five different membranes. Blood Purif. 1988;6:96–105.

    Article  CAS  PubMed  Google Scholar 

  51. Jindal KK, McDougall J, Woods B, Nowakowski L, Goldstein MB. A study of the basic principles determining the performance of several high-flux dialyzers. Am J Kidney Dis. 1989;14:507–11.

    Article  CAS  PubMed  Google Scholar 

  52. Klinke B, Rockel A, Abdelhamid S, Fiegel P, Walb D. Transmembrane transport and adsorption of beta2-microglobulin during hemodialysis using polysulfone, polyacrylonitrile, polymethylmethacrylate, and cuprammonium rayon membranes. Int J Artif Organs. 1989;12:697–702.

    Article  CAS  PubMed  Google Scholar 

  53. Clark WR, Macias WL, Molitoris BA, Wang NHL. ß2-microglobulin membrane adsorption: equilibrium and kinetic characterization. Kidney Int. 1994;46:1140–6.

    Article  CAS  PubMed  Google Scholar 

  54. Clark WR, Macias WL, Molitoris BA, Wang NHL. Plasma protein adsorption to highly permeable hemodialysis membranes. Kidney Int. 1995;48:481–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ronco C, Brendolan A, La Greca G. The peritoneal dialysis system. Nephrol Dial Transplant. 1998;13(Suppl 6):94–9.

    Article  PubMed  Google Scholar 

  56. Amerling R, Ronco C, Levin NW. Continuous flow peritoneal dialysis. Perit Dial Int. 2000;20(Suppl 2):S178–82.

    Google Scholar 

  57. Ronco C. Limitations of peritoneal dialysis. Kidney Int. 1996;50(Suppl 56):S69–74.

    Google Scholar 

  58. Rippe B, Simonsen O, Stelin G. Clinical implications of a three pore model of peritoneal transport. Perit Dial Int. 1991;7:3–9.

    CAS  Google Scholar 

  59. Dedrick RL, Flessner MF, Collins JM, Schulz JS. Is the peritoneum a membrane? ASAIO J. 1982;5:1–8.

    Google Scholar 

  60. Ronco C, Feriani M, Chiaramonte S, Brendolan A, Milan M, La Greca G. Peritoneal blood flow: does it matter? Perit Dial Int. 1996;16(Suppl 1):70–5.

    Article  Google Scholar 

  61. Ronco C, Brendolan A, Crepaldi C, Conz P, Bragantini L, Milan M, La Greca G. Ultrafiltration and clearance studies in human isolated peritoneal vascular loops. Blood Purif. 1994;12:233–42.

    Article  CAS  PubMed  Google Scholar 

  62. Aune S. Transperitoneal exchanges II: peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol. 1970;5:99–102.

    Article  CAS  PubMed  Google Scholar 

  63. Ronco C, Borin D, Brendolan A, La Greca G. Influence of blood flow and plasma proteins on ultrafiltration rate in peritoneal dialysis. In: Maher JF, Winchester JF, editors. Frontiers in peritoneal dialysis. New York: Friedrich and Associates; 1986. p. 82–6.

    Chapter  Google Scholar 

  64. Ronco C, Feriani M, Chiaramonte S, La Greca G. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int. 1990;10:119–26.

    Article  CAS  PubMed  Google Scholar 

  65. Waniewski J, Werynski A, Lindholm B. Effect of blood perfusion on diffusive transport in peritoneal dialysis. Kidney Int. 1999;56:707–13.

    Article  CAS  PubMed  Google Scholar 

  66. Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal blood transport. J Am Soc Nephrol. 1997;8:471–4.

    Article  CAS  PubMed  Google Scholar 

  67. Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol. 1997;8:1946–50.

    Article  CAS  PubMed  Google Scholar 

  68. Ronco C. The nearest capillary hypothesis: a novel approach to peritoneal transport physiology. Perit Dial Int. 1996;16:121–5.

    Article  CAS  PubMed  Google Scholar 

  69. Henderson L. Why do we use clearance? Blood Purif. 1995;13:283–8.

    Article  CAS  PubMed  Google Scholar 

  70. Henderson L, Leypoldt JK, Lysaght M, Cheung A. Death on dialysis and the time/flux trade-off. Blood Purif. 1997;15:1–14.

    Article  CAS  PubMed  Google Scholar 

  71. Clark WR, Henderson LW. Renal vs. continuous vs. intermittent therapies for removal of uremic toxins. Kidney Int. 2001;59(Suppl 78):S298–303.

    Article  Google Scholar 

  72. Clark WR, Shinaberger JH. Clinical evaluation of a new high-efficiency hemodialyzer: polysynthane (PSN™). ASAIO J. 2000;46:288–92.

    Article  CAS  PubMed  Google Scholar 

  73. Jaffrin MY. Convective mass transfer in hemodialysis. Artif Organs. 1995;19:1162–71.

    Article  CAS  PubMed  Google Scholar 

  74. Katz M, Hull A. Transcellular creatinine disequilibrium and its significance in hemodialysis. Nephron. 1974;12:171–7.

    Article  CAS  PubMed  Google Scholar 

  75. Slatsky M, Schindhelm K, Farrell P. Creatinine transfer between red blood cells and plasma: a comparison between normal and uremic subjects. Nephron. 1978;22:514–21.

    Article  Google Scholar 

  76. Schmidt B, Ward R. The impact of erythropoietin on hemodialyzer design and performance. Artif Organs. 1989;13:35–42.

    Article  CAS  PubMed  Google Scholar 

  77. Lim V, Flanigan M, Fangman J. Effect of hematocrit on solute removal during high efficiency hemodialysis. Kidney Int. 1990;37:1557–62.

    Article  CAS  PubMed  Google Scholar 

  78. Shinaberger J, Miller J, Gardner P. Erythropoietin alert: risks of high hematocrit hemodialysis. ASAIO Trans. 1988;34:179–84.

    CAS  PubMed  Google Scholar 

  79. Clark WR, Leypoldt JK, Henderson LW, Mueller BA, Scott MK, Vonesh EF. Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J Am Soc Nephrol. 1999;10:601–10.

    Article  CAS  PubMed  Google Scholar 

  80. Clark WR, Rocco MV, Collins AJ. Quantification of hemodialysis: analysis of methods and relevance to clinical outcome. Blood Purif. 1997;15:92–111.

    Article  CAS  PubMed  Google Scholar 

  81. Daugirdas JT. Second-generation estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clark, W.R., Ronco, C. (2021). The Biology of Dialysis. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics