Skip to main content

Hemodialysis Vascular Access in Children

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

Vascular access has been heralded as the backbone to the provision of hemodialysis. Whether in the face of acute kidney injury (AKI) requiring kidney replacement therapy (KRT) or as a result of chronic kidney disease (CKD), children should not be considered “small adults”. Furthermore, a critical issue for these patients is to provide adequate vascular access for current KRT requirements without compromising future potential access sites. Because this approach requires a different surgical philosophy, it is important to develop a team composed of surgeons, pediatric nephrologists, and dialysis nurses interested in these unique challenges. This chapter provides a basic overview of pediatric vascular access creation and maintenance considering both surgical and medical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22:1999–2009.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ingelfinger JR, Kalantar-Zadeh K, Schaefer F. World kidney day steering committee. World Kidney Day 2016: Averting the legacy of kidney disease-focus on childhood. Pediatr Nephrol. 2016;31(3):343–8.

    Article  PubMed  Google Scholar 

  3. United States Renal Data System. 2019 USRDS annual data report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2019.

    Google Scholar 

  4. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). 2011 Annual Dialysis Report. https://naprtcs.org/system/files/2011_Annual_Dialysis_Report.pdf

  5. Boehm M, Bonthuis M, Noordzij M, Harambat J, Groothoff JW, Melgar ÁA, et al. Hemodialysis vascular access and subsequent transplantation: a report from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2019;34(4):713–21.

    Article  PubMed  Google Scholar 

  6. Borzych-Duzalka D, Shroff R, Ariceta G, Yap YC, Paglialonga F, Xu H, et al. Vascular access choice, complications, and outcomes in children on maintenance hemodialysis: findings from the international pediatric hemodialysis network (IPHN) registry. Am J Kidney Dis. 2019;74(2):193–202.

    Article  PubMed  Google Scholar 

  7. Harambat J, Ekulu PM. Inequalities in access to pediatric ESRD care: a global health challenge. Pediatr Nephrol. 2016;31(3):353–8.

    Article  PubMed  Google Scholar 

  8. Davidson I, Gallieni M, Saxena R, Dolmatch B. A patient centered decision-making dialysis access algorithm. J Vasc Access. 2007;8(2):59–68.

    Article  CAS  PubMed  Google Scholar 

  9. Shroff R, Calder F, Bakkaloğlu S, Nagler EV, Stuart S, Stronach L, et al. European Society for Paediatric Nephrology Dialysis Working Group. Vascular access in children requiring maintenance haemodialysis: a consensus document by the European Society for Paediatric Nephrology Dialysis Working Group. Nephrol Dial Transplant. 2019;34(10):1746–65.

    Article  PubMed  Google Scholar 

  10. Zingraff J, et al. Stenosis of the subclavian vein after percutaneous catheterization. In: Koostra G, Jorning P, editors. Proceedings of the international congress on access surgery. Ridgewood, NJ: Bogden & Sons, Inc.; 1983.

    Google Scholar 

  11. Stalter K, Stevens G, Sterling W. Late stenosis of the subclavian vein after hemodialysis catheter injury. Surgery. 1986;100:924–7.

    CAS  PubMed  Google Scholar 

  12. Fant G, Dennis V, Quarles L. Late vascular complications of the subclavian dialysis catheter. Am J Kidney Dis. 1986;7:225–8.

    Article  CAS  PubMed  Google Scholar 

  13. Konner K. Subclavian haemodialysis access: is it still justified in 1995? Nephrol Dial Transplant. 1995;10(11):1988–91.

    CAS  PubMed  Google Scholar 

  14. Franzone AJ, Tucker BL, Brennan LP, Fine RN, Stiles QR. Hemodialysis in children. Experience with arteriovenous shunts. Arch Surg. 1971;102(6):592–3.

    Article  CAS  PubMed  Google Scholar 

  15. Idriss FS, Nikaidoh H, King LR, Swenson O. Arteriovenous shunts for hemodialysis in infants and children. J Pediatr Surg. 1971;6(5):639–44.

    Article  CAS  PubMed  Google Scholar 

  16. Buselmeier TJ, Kjellstrand CM, Rattazzi LC, Simmons RL, Najarian JS. A new subcutaneous prosthetic a-V shunt: advantageous over the standard Quinton-Scribner shunt and a-V fistula. Proc Clin Dial Transplant Forum. 1972;2:67–75.

    CAS  PubMed  Google Scholar 

  17. Valentini RP, Chand DH. Catheter craze continues for pediatric hemodialysis vascular access: the need to move from catheter first to catheter last. Am J Kidney Dis. 2019;74(2):155–7.

    Article  PubMed  Google Scholar 

  18. Chand DH, Valentini RP. International pediatric fistula first initiative: a call to action. Am J Kidney Dis. 2008;51(6):1016–24.

    Article  PubMed  Google Scholar 

  19. National Kidney Foundation. KDOQI Clinical practice guidelines and clinical practice recommendations for 2006 updates: haemodialysis adequacy, peritoneal dialysis and vascular access. Am J Kidney Dis. 2006;48:S1–S322.

    Article  Google Scholar 

  20. Sidawy AN, Gray R, Besarab A, et al. Recommended standards for reports dealing with arteriovenous hemodialysis accesses. J Vasc Surg. 2002;35(3):603–10.

    Article  PubMed  Google Scholar 

  21. Lee T, Mokrzycki M, Moist L, et al. Standardized definitions for hemodialysis vascular access. Semin Dial. 2011;24(5):515–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chand DH, Geary D, Patel H, Greenbaum LA, Nailescu C, Brier ME, Valentini RP. Barriers, biases, and beliefs about arteriovenous fistula placement in children: a survey of the international pediatric fistula first initiative (IPFFI) within the Midwest pediatric nephrology consortium (MWPNC). Hemodial Int. 2015;19(1):100–7.

    Article  PubMed  Google Scholar 

  23. Shroff R, Sterenborg RB, Kuchta A, Arnold A, Thomas N, Stronach L, et al. A dedicated vascular access clinic for children on haemodialysis: two years’ experience. Pediatr Nephrol. 2016;31:2337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cagli K, Uzun A, Emir M, Bakuy V, Ulas M, Sener E. Correlation of modified allen test with Doppler ultrasonography. Asian Cardiovasc Thorac Ann. 2006;14:105–8.

    Article  PubMed  Google Scholar 

  25. Brittinger WD, Walker G, Twittenhoff WD, Konrad N. Vascular access for hemodialysis in children. Pediatr Nephrol. 1997;11:87–95. 17.

    Article  CAS  PubMed  Google Scholar 

  26. Bagolan P, Spagnoli A, Ciprandi G, et al. A 10 year experience of brescia-cimino arteriovenous fistula in children: technical evolution and refinements. J Vasc Surg. 1998;27(4):640–4.

    Article  CAS  PubMed  Google Scholar 

  27. Bourquelot P, Cussenot O, Corbi P, Pillion G, Gagnadoux MF, Bensman A, Loirat C, Broyer M. Microsurgical creation and follow-up of arteriovenous fistulae for chronic haemodialysis in children. Pediatr Nephrol. 1990;4:156–9.

    Article  CAS  PubMed  Google Scholar 

  28. Matoussevitch V, Taylan C, Konner K, Gawenda M, Kuhr K, Hoppe B, et al. AV fistula creation in paediatric patients: outcome is independent of demographics and fistula type reducing usage of venous catheters. J Vasc Access. 2015;16:382–7.

    Article  PubMed  Google Scholar 

  29. Bender M, Bruyninckx C, Gerlag P. The brachiocephalic elbow fistula: a useful alternative angioaccess for permanent hemodialysis. J Vasc Surg. 1994;20:808–13.

    Article  CAS  PubMed  Google Scholar 

  30. Rooijens PP, Tordoir JH, Stijnen T, Burgmans JP, Smet de AA, Yo TI. Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. Eur J Vasc Endovasc Surg. 2004;28:583–9.

    Article  CAS  PubMed  Google Scholar 

  31. Chand DH, Bednarz D, Eagleton M, Krajewski L. A vascular access team can increase AV fistula creation in pediatric ESRD patients: a single center experience. Semin Dial. 2009;22(6):679–83.

    Article  PubMed  Google Scholar 

  32. Karava V, Jehanno P, Kwon T, Deschênes G, Macher MA, Bourquelot P. Autologous arteriovenous fistulas for hemodialysis using microsurgery techniques in children weighing less than 20 kg. Pediatr Nephrol. 2018;33(5):855–62.

    Article  PubMed  Google Scholar 

  33. Almási-Sperling V, Galiano M, Lang W, Rother U, Rascher W, Regus S. Timing of first arteriovenous fistula cannulation in children on hemodialysis. Pediatr Nephrol. 2016;31:1647–57.

    Article  PubMed  Google Scholar 

  34. Onder AM, Flynn JT, Billings AA, Deng F, DeFreitas M, Katsoufis C, et al. Predictors of time to first cannulation for arteriovenous fistula in pediatric hemodialysis patients: Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2020;35(2):287–95.

    Article  PubMed  Google Scholar 

  35. Oder TF, Teodorescu V, Uribarri J. Effect of exercise on the diameter of arteriovenous fistulae in hemodialysis patients. ASAIO J. 2003;49:554–5.

    Article  PubMed  Google Scholar 

  36. Van Loon MM, Goovaerts T, Kessels AG, van der Sande FM, Tordoir JH. Buttonhole needling of haemodialysis arteriovenous fistulae results in less complications and interventions compared to the rope-ladder technique. Nephrol Dial Transplant. 2010;25(1):225–30.

    Article  PubMed  Google Scholar 

  37. Wong B, Muneer M, Wiebe N, Storie D, Shurraw S, Pannu N. Buttonhole versus rope-ladder cannulation of arteriovenous fistulas for hemodialysis: a systematic review. Am J Kidney Dis. 2014;64(6):918–36.

    Article  PubMed  Google Scholar 

  38. Tanner NC, Da Silva AF. Medical adjuvant treatment to improve the patency of arteriovenous fistulae and grafts: a systematic review and metaanalysis. Eur J Vasc Endovasc Surg. 2016;52:243–52.

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen DB, Shugart A, Lines C, Shah AB, Edwards J, Pollock D, Sievert D, Patel PR. National Healthcare Safety Network (NHSN) Dialysis event surveillance report for 2014. Clin J Am Soc Nephrol. 2017;12(7):1139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sheth RD, Brandt ML, Brewer ED, Nuchtern JG, Kale AS, Goldstein SL. Permanent hemodialysis vascular access survival in children and adolescents with end-stage renal disease. Kidney Int. 2002;62:1864–9.

    Article  PubMed  Google Scholar 

  41. Gradman WS, Lerner G, Mentser M, Rodriguez H, Kamil ES. Experience with autogenous arteriovenous access for hemodialysis in children and adolescents. Ann Vasc Surg. 2005;19(5):609–12.

    Article  PubMed  Google Scholar 

  42. Guzzetta PC, Salcedo JR, Bell SB, Ruley EJ. Limb growth and cardiac complications of fistulas in children. Int J Pediatr Nephrol. 1987;8:167–70.

    CAS  PubMed  Google Scholar 

  43. O’Regan S, Danais S, Yazbeck S. Posttransplantation complications of lower limb polytetrafluoroethylene grafts in children. Nephron. 1989;52:90–2.

    Article  PubMed  Google Scholar 

  44. Conlon P, Nicholson M, Schwab SJ. Hemodialysis vascular access: practice and problems. New York: Oxford University Press; 2000.

    Google Scholar 

  45. Wilson S. Vascular access: principles and practice. 3rd ed. St. Louis: Mosby; 1996.

    Google Scholar 

  46. Rees L, Mattoo TK, Kim MS. Hemodialysis for children with chronic kidney disease. www.uptodate.com. 2020.

  47. Bunchman TE, Brophy PD, Goldstein SL. Technical considerations for renal replacement therapy in children. Semin Nephrol. 2008;28(5):488–92.

    Article  CAS  PubMed  Google Scholar 

  48. De Galasso L, Picca S, Guzzo I. Dialysis modalities for the management of pediatric acute kidney injury. Pediatr Nephrol. 2020;35(5):753–65.

    Article  PubMed  Google Scholar 

  49. Szymczak M, Kaliciński P, Rubik J, Broniszczak D, Kowalewski G, Stefanowicz M, Kowalski A, Ciopiński M, Grenda R. Kidney transplantation in children with thrombosed inferior caval vein – atypical vascular anastomoses. Ann Transplant. 2019;24:25–9.

    Google Scholar 

  50. Shishido S, Kawamura T, Hamasaki Y, Takahashi Y, Itabashi Y, Muramatsu M, et al. Successful kidney transplantation in children with a compromised inferior vena cava. Transplant Direct. 2016 May 23;2(6):e82.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Geary DF, Schaefer F. Chapter 56, Hemodialysis vascular access: complications and outcomes. In: Chand DH, Ramage IJ, editors. Comprehensive pediatric nephrology. St. Louis: Mosby; 2008.

    Google Scholar 

  52. Sheth RD, Kale AS, Brewer ED, Brandt ML, Nuchtern JG, Goldstein SL. Successful use of Tesio catheters in pediatric patients receiving chronic hemodialysis. Am J Kidney Dis. 2001;38:553–9.

    Article  CAS  PubMed  Google Scholar 

  53. Richard HM 3rd, Hastings GS, Boyd-Kranis RL, et al. A randomized, prospective evaluation of the Tesio, Ash split, and Opti-flow hemodialysis catheters. J Vasc Interv Radiol. 2001;12(4):431–5.

    Article  PubMed  Google Scholar 

  54. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant. 1991;6:722–4.

    Article  CAS  PubMed  Google Scholar 

  55. Chand DH, Valentini RP, Kamil ES. Hemodialysis vascular access options in pediatrics: considerations for patients and practitioners. Pediatr Nephrol. 2009;24:1121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Firwana BM, Hasan R, Ferwana M, Varon J, Stern A, Gidwani U. Tissue plasminogen activator versus heparin for locking dialysis catheters: a systematic review. Avicenna J Med. 2011;1:29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mandel-Shorer N, Tzvi-Behr S, Harvey E, Revel-Vilk S. Central venous catheter-related venous thrombosis in children with end-stage renal disease undergoing hemodialysis. Thromb Res. 2018;172:150–7.

    Article  CAS  PubMed  Google Scholar 

  58. Golestaneh L, Mokrzycki MH. Prevention of hemodialysis catheter infections: Ointments, dressings, locks, and catheter hub devices. Hemodial Int. 2018;22(S2):S75–82.

    Article  PubMed  Google Scholar 

  59. Tokars JI, Arduino MJ, Alter MJ. Infection control in hemodialysis units. Infect Dis Clin N Am. 2001;15:797–812.

    Article  CAS  Google Scholar 

  60. D’Agata EM. Antimicrobial use and stewardship programs among dialysis centers. Semin Dial. 2013;26(4):457–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Boehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boehm, M., Chand, D.H., Brandt, M.L. (2021). Hemodialysis Vascular Access in Children. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics