Skip to main content

Preservation of Residual Renal Function in Children Reaching End-Stage Renal Disease

  • Chapter
  • First Online:
Pediatric Dialysis
  • 767 Accesses

Abstract

When dialysis is initiated, most patients still have some degree of residual renal function (RRF) that plays an essential role in volume control, maintenance of optimal cardiovascular status, nutrition, growth, quality of life, and survival of children on dialysis. Therefore, efforts to preserve RRF are critical especially when an extended duration of dialysis is expected. In this chapter, the measurement and clinical benefits of RRF, risk factors for losing RRF, and strategies to preserve RRF are discussed with a comprehensive review of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González Celedón C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20.

    Article  PubMed  Google Scholar 

  2. Wang AY, Lai KN. The importance of residual renal function in dialysis patients. Kidney Int. 2006;69(10):1726–32.

    Article  PubMed  Google Scholar 

  3. Marron B, Remon C, Perez-Fontan M, Quiros P, Ortiz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int. 2008;73(S108):S42–51.

    Article  Google Scholar 

  4. Guzzo I, Mancini E, Wafo SK, Rava L, Picca S. Residual renal function and nutrition in young patients on chronic hemodialysis. Pediatr Nephrol. 2009;24(7):1391–7.

    Article  PubMed  Google Scholar 

  5. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int. 2002;61(1):256–65.

    Article  CAS  PubMed  Google Scholar 

  6. Wong J, Sridharan S, Berdeprado J, Vilar E, Viljoen A, Wellsted D, et al. Predicting residual kidney function in hemodialysis patients using serum beta-trace protein and beta2-microglobulin. Kidney Int. 2016;89(5):1090–8.

    Article  CAS  PubMed  Google Scholar 

  7. Shafi T, Michels WM, Levey AS, Inker LA, Dekker FW, Krediet RT, et al. Estimating residual kidney function in dialysis patients without urine collection. Kidney Int. 2016;89(5):1099–110.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim SJ, Sohn YB, Park SW, Jin DK, Paik KH. Serum cystatin C for estimation of residual renal function in children on peritoneal dialysis. Pediatr Nephrol. 2011;26(3):433–40.

    Article  PubMed  Google Scholar 

  9. Montini G, Amici G, Milan S, Mussap M, Naturale M, Ratsch IM, et al. Middle molecule and small protein removal in children on peritoneal dialysis. Kidney Int. 2002;61(3):1153–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lowenstein J, Grantham JJ. Residual renal function: a paradigm shift. Kidney Int. 2017;91(3):561–5.

    Article  PubMed  Google Scholar 

  11. Wong J, Kaja Kamal RM, Vilar E, Farrington K. Measuring residual renal function in hemodialysis patients without urine collection. Semin Dial. 2017;30(1):39–49.

    Article  PubMed  Google Scholar 

  12. C-UCPDS Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

    Google Scholar 

  13. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158–62.

    CAS  PubMed  Google Scholar 

  14. Termorshuizen F, Korevaar J, Dekker F, van Manen J, Boeschoten E, Krediet R. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis. 2003;41(6):1293–302.

    Article  PubMed  Google Scholar 

  15. Rocco MV, Frankenfield DL, Prowant B, Frederick P, Flanigan MJ, Centers for Medicare & Medicaid Services Peritoneal Dialysis Core Indicators Study Group. Risk factors for early mortality in U.S. peritoneal dialysis patients: impact of residual renal function. Perit Dial Int. 2002;22(3):371–9.

    Article  PubMed  Google Scholar 

  16. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT, et al. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol. 2004;15(4):1061–70.

    Article  PubMed  Google Scholar 

  17. Lee MJ, Park JT, Park KS, Kwon YE, Oh HJ, Yoo TH, et al. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving dialysis. Clin J Am Soc Nephrol. 2017;12(3):426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szeto CC, Wong TY, Chow KM, Leung CB, Li PK. Are peritoneal dialysis patients with and without residual renal function equivalent for survival study? Insight from a retrospective review of the cause of death. Nephrol Dial Transplant. 2003;18(5):977–82.

    Article  PubMed  Google Scholar 

  19. Wang AY, Lam CW, Wang M, Chan IH, Lui SF, Sanderson JE. Is valvular calcification a part of the missing link between residual kidney function and cardiac hypertrophy in peritoneal dialysis patients? Clin J Am Soc Nephrol. 2009;4(10):1629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shin DH, Lee YK, Oh J, Yoon JW, Rhee SY, Kim EJ, et al. Vascular calcification and cardiac function according to residual renal function in patients on hemodialysis with urination. PLoS One. 2017;12(9):e0185296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Acar B, Yalcinkaya F, Cakar N, Yuksel S, Ozcakar ZB, Uncu N, et al. The outcome for pediatric patients on peritoneal dialysis. J Nephrol. 2008;21(3):394–9.

    PubMed  Google Scholar 

  22. Bakkaloglu SA, Saygili A, Sever L, Noyan A, Akman S, Ekim M, et al. Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPEPD) report. Nephrol Dial Transplant. 2009;24(11):3525–32.

    Article  PubMed  Google Scholar 

  23. Page DE, Knoll GA, Cheung V. The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Adv Perit Dial. 2002;18:189–91.

    CAS  PubMed  Google Scholar 

  24. Li L, Liang W, Ye T, Chen Z, Zuo X, Du X, et al. The association between nutritional markers and biochemical parameters and residual renal function in peritoneal dialysis patients. PLoS One. 2016;11(6):e0156423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Viaene L, Bammens B, Meijers BK, Vanrenterghem Y, Vanderschueren D, Evenepoel P. Residual renal function is an independent determinant of serum FGF-23 levels in dialysis patients. Nephrol Dial Transplant. 2012;27(5):2017–22.

    Article  CAS  PubMed  Google Scholar 

  26. Akimoto T, Shiizaki K, Sugase T, Watanabe Y, Yoshizawa H, Otani N, et al. The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol. 2012;16(3):442–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wang A, Woo J, Wang M, Sea M, Sanderson J, Lui S-F, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transplant. 2005;20(2):396–403.

    Article  PubMed  Google Scholar 

  28. Dixit MP, Cabansag MR, Piscitelli J, Greifer I, Silverstein DM. Serum beta2-microglobulin and immunoglobulin levels in young hemodialysis patients. Pediatr Nephrol. 1999;13(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  29. Chadha V, Blowey DL, Warady BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Perit Dial Int. 2001;21(Suppl 3):S179–84.

    Article  PubMed  Google Scholar 

  30. Shemin D, Bostom AG, Lambert C, Hill C, Kitsen J, Kliger AS. Residual renal function in a large cohort of peritoneal dialysis patients: change over time, impact on mortality and nutrition. Perit Dial Int. 2000;20(4):439–44.

    Article  CAS  PubMed  Google Scholar 

  31. Poulsen CG, Kjaergaard KD, Peters CD, Jespersen B, Jensen JD. Quality of life development during initial hemodialysis therapy and association with loss of residual renal function. Hemodial Int. 2017;21(3):409–21.

    Article  PubMed  Google Scholar 

  32. Park HC, Lee H, Lee JP, Kim DK, Oh KH, Joo KW, et al. Lower residual renal function is a risk factor for depression and impaired health-related quality of life in Korean peritoneal dialysis patients. J Korean Med Sci. 2012;27(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  33. Shafi T, Jaar BG, Plantinga LC, Fink NE, Sadler JH, Parekh RS, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis. 2010;56(2):348–58.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Erkan E, Moritz M, Kaskel F. Impact of residual renal function in children on hemodialysis. Pediatr Nephrol. 2001;16(11):858–61.

    Article  CAS  PubMed  Google Scholar 

  35. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52.

    Article  CAS  PubMed  Google Scholar 

  36. Tkaczyk M, Nowicki M, Balasz-Chmielewska I, Boguszewska-Baczkowska H, Drozdz D, Kollataj B, et al. Hypertension in dialysed children: the prevalence and therapeutic approach in Poland – a nationwide survey. Nephrol Dial Transplant. 2006;21(3):736–42.

    Article  PubMed  Google Scholar 

  37. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2002;62(3):1046–53.

    Article  PubMed  Google Scholar 

  38. Hidaka H, Nakao T. Preservation of residual renal function and factors affecting its decline in patients on peritoneal dialysis. Nephrology (Carlton). 2003;8(4):184–91.

    Article  Google Scholar 

  39. Roszkowska-Blaim M, Skrzypczyk P. Risk factors for decline of residual renal function in children treated with peritoneal dialysis. Perit Dial Int. 2016;36(6):669–75.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Uchiyama K, Yanai A, Maeda K, Ono K, Honda K, Tsujimoto R, et al. Baseline and time-averaged values predicting residual renal function decline rate in Japanese peritoneal dialysis patients. Ther Apher Dial. 2017;21(6):599–605.

    Article  CAS  PubMed  Google Scholar 

  41. Mitsnefes M, Ho P-L, McEnery P. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol. 2003;14(10):2618–22.

    Article  PubMed  Google Scholar 

  42. Litwin M. Risk factors for renal failure in children with non-glomerular nephropathies. Pediatr Nephrol. 2004;19(2):178–86.

    Article  PubMed  Google Scholar 

  43. Tian JP, Wang H, Tian XK, Du FH, Wang T. The impact of visit-to-visit systolic blood pressure variability on residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Turk J Med Sci. 2018;48(2):279–85.

    CAS  PubMed  Google Scholar 

  44. Neild GH. What do we know about chronic renal failure in young adults? II. Adult outcome of pediatric renal disease. Pediatr Nephrol. 2009;24(10):1921–8.

    Article  PubMed  Google Scholar 

  45. Ha IS, Yap HK, Munarriz RL, Zambrano PH, Flynn JT, Bilge I, et al. Risk factors for loss of residual renal function in children treated with chronic peritoneal dialysis. Kidney Int. 2015;88(3):605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet. 1997;349(9059):1117–23.

    Article  CAS  PubMed  Google Scholar 

  47. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.

    Article  PubMed  Google Scholar 

  49. Wuehl E, Mehls O, Schaefer F, ESCAPE Trial Group. Long-term dissociation of antiproteinuric and antihypertensive efficacy of ACE inhibition in children with chronic renal failure.COD.OC 16 [Abstract]. Pediatr Nephrol. 2006;21:1505.

    Google Scholar 

  50. Singhal MK, Bhaskaran S, Vidgen E, Bargman JM, Vas SI, Oreopoulos DG. Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit Dial Int. 2000;20(4):429–38.

    Article  CAS  PubMed  Google Scholar 

  51. Roszkowska-Blaim M, Skrzypczyk P, Jander A, Tkaczyk M, Balasz-Chmielewska I, Zurowska A, et al. The effect of peritoneal dialysis method on residual renal function in children. Adv Perit Dial. 2012;28:112–9.

    PubMed  Google Scholar 

  52. Shin SK, Noh H, Kang SW, Seo BJ, Lee IH, Song HY, et al. Risk factors influencing the decline of residual renal function in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1999;19(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  53. de Fijter CW, ter Wee PM, Donker AJ. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 2000;15(7):1094–6.

    Article  PubMed  Google Scholar 

  54. Liao CT, Shiao CC, Huang JW, Hung KY, Chuang HF, Chen YM, et al. Predictors of faster decline of residual renal function in Taiwanese peritoneal dialysis patients. Perit Dial Int. 2008;28(Suppl 3):S191–5.

    Article  CAS  PubMed  Google Scholar 

  55. Szeto CC, Kwan BC, Chow KM, Chung S, Yu V, Cheng PM, et al. Predictors of residual renal function decline in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int. 2015;35(2):180–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Feber J, Schrer K, Schaefer F, Mkov M, Janda J. Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatr Nephrol. 1994;8(5):579–83.

    Article  CAS  PubMed  Google Scholar 

  57. Van Biesen W, Dequidt C, Vanholder R, Lameire N. The impact of healthy start peritoneal dialysis on the evolution of residual renal function and nutrition parameters. Adv Perit Dial. 2002;18:44–8.

    PubMed  Google Scholar 

  58. Furth SL, Cole SR, Fadrowski JJ, Gerson A, Pierce CB, Chandra M, et al. The association of anemia and hypoalbuminemia with accelerated decline in GFR among adolescents with chronic kidney disease. Pediatr Nephrol. 2007;22(2):265–71.

    Article  PubMed  Google Scholar 

  59. Gouva C, Nikolopoulos P, Ioannidis JPA, Siamopoulos K. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 2004;66(2):753–60.

    Article  PubMed  Google Scholar 

  60. Wang AY, Wang M, Woo J, Law MC, Chow KM, Li PK, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int. 2002;62(2):639–47.

    Article  PubMed  Google Scholar 

  61. Borzych-Duzalka D, Bilginer Y, Ha IS, Bak M, Rees L, Cano F, et al. Management of anemia in children receiving chronic peritoneal dialysis. J Am Soc Nephrol. 2013;24(4):665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45(6):978–93.

    Article  CAS  PubMed  Google Scholar 

  63. Harambat J, Kunzmann K, Azukaitis K, Bayazit AK, Canpolat N, Doyon A, et al. Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int. 2017;92(6):1507–14.

    Article  CAS  PubMed  Google Scholar 

  64. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chalmers L, Kaskel FJ, Bamgbola O. The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis. 2006;13(4):352–64.

    Article  PubMed  Google Scholar 

  66. Soares CM, Diniz JS, Lima EM, Oliveira GR, Canhestro MR, Colosimo EA, et al. Predictive factors of progression to chronic kidney disease stage 5 in a predialysis interdisciplinary programme. Nephrol Dial Transplant. 2009;24(3):848–55.

    Article  PubMed  Google Scholar 

  67. Han KH, Lee SH, Lee HK, Choi HJ, Lee BH, Cho HY, et al. Risk factors for the progression of pediatric chronic kidney disease-a single center study. J Korean Soc Pediatr Nephrol. 2007;11(2):239–46.

    Article  Google Scholar 

  68. Borzych D, Rees L, Ha IS, Chua A, Valles PG, Lipka M, et al. The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int. 2010;78(12):1295–304.

    Article  PubMed  Google Scholar 

  69. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol. 2000;11(3):556–64.

    CAS  PubMed  Google Scholar 

  70. Noordzij M, Voormolen NM, Boeschoten EW, Dekker FW, Bos WJ, Krediet RT, et al. Disordered mineral metabolism is not a risk factor for loss of residual renal function in dialysis patients. Nephrol Dial Transplant. 2009;24(5):1580–7.

    Article  CAS  PubMed  Google Scholar 

  71. Park JT, Kim DK, Chang TI, Kim HW, Chang JH, Park SY, et al. Uric acid is associated with the rate of residual renal function decline in peritoneal dialysis patients. Nephrol Dial Transplant. 2009;24(11):3520–5.

    Article  CAS  PubMed  Google Scholar 

  72. Hsieh YP, Yang Y, Chang CC, Kor CT, Wen YK, Chiu PF, et al. U-shaped relationship between uric acid and residual renal function decline in continuous ambulatory peritoneal dialysis patients. Nephrology (Carlton). 2017;22(6):427–35.

    Article  CAS  Google Scholar 

  73. Liao CT, Chen YM, Shiao CC, Hu FC, Huang JW, Kao TW, et al. Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol Dial Transplant. 2009;24(9):2909–14.

    Article  PubMed  Google Scholar 

  74. Liu JH, Wang SM, Chen CC, Hsieh CL, Lin SY, Chou CY, et al. Relation of ankle-brachial index to the rate of decline of residual renal function in peritoneal dialysis patients. Nephrology (Carlton). 2011;16(2):187–93.

    Article  Google Scholar 

  75. Caliskan Y, Ozkok A, Akagun T, Alpay N, Guz G, Polat N, et al. Cardiac biomarkers and noninvasive predictors of atherosclerosis in chronic peritoneal dialysis patients. Kidney Blood Press Res. 2012;35(5):340–8.

    Article  CAS  PubMed  Google Scholar 

  76. Tian SL, Tian XK, Han QF, Axelsson J, Wang T. Presence of peripheral arterial disease predicts loss of residual renal function in incident CAPD patients. Perit Dial Int. 2012;32(1):67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Davenport A, Sayed RH, Fan S. Is extracellular volume expansion of peritoneal dialysis patients associated with greater urine output? Blood Purif. 2011;32(3):226–31.

    Article  PubMed  Google Scholar 

  78. Tian N, Guo Q, Zhou Q, Cao P, Hong L, Chen M, et al. The impact of fluid overload and variation on residual renal function in peritoneal dialysis patient. PLoS One. 2016;11(4):e0153115.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kawai Y, Tanaka S, Yoshida H, Hara M, Tsujikawa H, Tsuruya K, et al. Association of B-type natriuretic peptide level with residual kidney function in incident peritoneal dialysis patients. Perit Dial Int. 2019;39(2):147–54.

    Article  PubMed  Google Scholar 

  80. Ardissino G, Testa S, Dacc V, Vigan S, Taioli E, Claris-Appiani A, et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr Nephrol. 2004;19(2):172–7.

    Article  PubMed  Google Scholar 

  81. Lane PH. Puberty and chronic kidney disease. Adv Chronic Kidney Dis. 2005;12(4):372–7.

    Article  PubMed  Google Scholar 

  82. Tonshoff B, Fine RN. Recombinant human growth hormone for children with renal failure. Adv Ren Replace Ther. 1996;3(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  83. Drechsler C, de Mutsert R, Grootendorst DC, Boeschoten EW, Krediet RT, le Cessie S, et al. Association of body mass index with decline in residual kidney function after initiation of dialysis. Am J Kidney Dis. 2009;53(6):1014–23.

    Article  PubMed  Google Scholar 

  84. Papp F, Friedman AL, Bereczki C, Haszon I, Kiss E, Endreffy E, et al. Renin-angiotensin gene polymorphism in children with uremia and essential hypertension. Pediatr Nephrol. 2003;18(2):150–4.

    Article  PubMed  Google Scholar 

  85. Hohenfellner K, Wingen AM, Nauroth O, Whl E, Mehls O, Schaefer F. Impact of ACE I/D gene polymorphism on congenital renal malformations. Pediatr Nephrol. 2001;16(4):356–61.

    Article  CAS  PubMed  Google Scholar 

  86. Oktem F, Sirin A, Bilge I, Emre S, Agachan B, Ispir T. ACE I/D gene polymorphism in primary FSGS and steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2004;19(4):384–9.

    Article  PubMed  Google Scholar 

  87. Amoroso A, Danek G, Vatta S, Crovella S, Berrino M, Guarrera S, et al. Polymorphisms in angiotensin-converting enzyme gene and severity of renal disease in Henoch-Schoenlein patients. Italian Group of Renal Immunopathology. Nephrol Dial Transplant. 1998;13(12):3184–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hussein A, Askar E, Elsaeid M, Schaefer F. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant. 2010;25(3):779–85.

    Article  CAS  PubMed  Google Scholar 

  89. Xu J, Guo Z, Bai Y, Zhang J, Cui L, Zhang H, et al. Single nucleotide polymorphisms in the D-loop region of mitochondrial DNA is associated with the kidney survival time in chronic kidney disease patients. Ren Fail. 2015;37(1):108–12.

    Article  CAS  PubMed  Google Scholar 

  90. Bodonyi-Kovacs G, Ma JZ, Chang J, Lipkowitz MS, Kopp JB, Winkler CA, et al. Combined effects of GSTM1 null allele and APOL1 renal risk alleles in CKD progression in the African American Study of Kidney Disease and Hypertension trial. J Am Soc Nephrol. 2016;27(10):3140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tin A, Grams ME, Estrella M, Lipkowitz M, Greene TH, Kao WH, et al. Patterns of kidney function decline associated with APOL1 genotypes: results from AASK. Clin J Am Soc Nephrol. 2016;11(8):1353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rudnicki M, Perco P, Haene BD, Leierer J, Heinzel A, Muhlberger I, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Investig. 2016;46(3):213–26.

    Article  CAS  Google Scholar 

  93. Parsa A, Kanetsky PA, Xiao R, Gupta J, Mitra N, Limou S, et al. Genome-wide association of CKD progression: the chronic renal insufficiency cohort study. J Am Soc Nephrol. 2017;28(3):923–34.

    Article  CAS  PubMed  Google Scholar 

  94. Xu X, Eales JM, Akbarov A, Guo H, Becker L, Talavera D, et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat Commun. 2018;9(1):4800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wuttke M, Wong CS, Wuhl E, Epting D, Luo L, Hoppmann A, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric Investigation for Genetic Factors Linked with Renal Progression Consortium. Nephrol Dial Transplant. 2016;31(2):262–9.

    CAS  PubMed  Google Scholar 

  96. Lang SM, Bergner A, Topfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int. 2001;21(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  97. Misra M, Vonesh E, Van Stone JC, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int. 2001;59(2):754–63.

    Article  CAS  PubMed  Google Scholar 

  98. Feber J, Scharer K, Schaefer F, Mikova M, Janda J. Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatr Nephrol. 1994;8(5):579–83.

    Article  CAS  PubMed  Google Scholar 

  99. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial. 2001;17:269–73.

    CAS  PubMed  Google Scholar 

  100. Hiroshige K, Yuu K, Soejima M, Takasugi M, Kuroiwa A. Rapid decline of residual renal function in patients on automated peritoneal dialysis. Perit Dial Int. 1996;16(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  101. Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 1999;14(5):1224–8.

    Article  CAS  PubMed  Google Scholar 

  102. Michels WM, Verduijn M, Grootendorst DC, le Cessie S, Boeschoten EW, Dekker FW, et al. Decline in residual renal function in automated compared with continuous ambulatory peritoneal dialysis. Clin J Am Soc Nephrol. 2011;6(3):537–42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bernardo A, Fonseca I, Rodrigues A, Carvalho MJ, Cabrita A. Predictors of residual renal function loss in peritoneal dialysis: is previous renal transplantation a risk factor? Adv Perit Dial. 2009;25:110–4.

    PubMed  Google Scholar 

  104. Holley JL, Aslam N, Bernardini J, Fried L, Piraino B. The influence of demographic factors and modality on loss of residual renal function in incident peritoneal dialysis patients. Perit Dial Int. 2001;21(3):302–5.

    Article  CAS  PubMed  Google Scholar 

  105. Dell’Aquila R, Berlingo G, Pellanda MV, Contestabile A. Continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: are there differences in outcome? Contrib Nephrol. 2009;163:292–9.

    Article  PubMed  Google Scholar 

  106. Balasubramanian G, McKitty K, Fan SL. Comparing automated peritoneal dialysis with continuous ambulatory peritoneal dialysis: survival and quality of life differences? Nephrol Dial Transplant. 2011;26(5):1702–8.

    Article  PubMed  Google Scholar 

  107. Cnossen TT, Usvyat L, Kotanko P, van der Sande FM, Kooman JP, Carter M, et al. Comparison of outcomes on continuous ambulatory peritoneal dialysis versus automated peritoneal dialysis: results from a USA database. Perit Dial Int. 2011;31(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  108. Adachi Y, Nishio A, Ikegami T. Tidal automated peritoneal dialysis preserves residual renal function better than non tidal automated peritoneal dialysis. Adv Perit Dial. 2007;23:98–101.

    PubMed  Google Scholar 

  109. Badve SV, Hawley CM, McDonald SP, Brown FG, Boudville NC, Wiggins KJ, et al. Use of aminoglycosides for peritoneal dialysis-associated peritonitis does not affect residual renal function. Nephrol Dial Transplant. 2012;27(1):381–7.

    Article  CAS  PubMed  Google Scholar 

  110. Baker RJ, Senior H, Clemenger M, Brown EA. Empirical aminoglycosides for peritonitis do not affect residual renal function. Am J Kidney Dis. 2003;41(3):670–5.

    Article  CAS  PubMed  Google Scholar 

  111. Shemin D, Maaz D, St Pierre D, Kahn SI, Chazan JA. Effect of aminoglycoside use on residual renal function in peritoneal dialysis patients. Am J Kidney Dis. 1999;34(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  112. Wuhl E, Mehls O, Schaefer F, ESCAPE Trial Group. Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int. 2004;66(2):768–76.

    Article  PubMed  Google Scholar 

  113. Ardissino G, Vigan S, Testa S, Dacc V, Paglialonga F, Leoni A, et al. No clear evidence of ACEi efficacy on the progression of chronic kidney disease in children with hypodysplastic nephropathy – report from the ItalKid Project database. Nephrol Dial Transplant. 2007;22(9):2525–30.

    Article  PubMed  Google Scholar 

  114. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis. 2004;43(6):1056–64.

    Article  CAS  PubMed  Google Scholar 

  115. Mokoli VM, Sumaili EK, Lepira FB, Mbutiwi FIN, Makulo JRR, Bukabau JB, et al. Factors associated with residual urine volume preservation in patients undergoing hemodialysis for end-stage kidney disease in Kinshasa. BMC Nephrol. 2018;19(1):68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Li P, Chow K-M, Wong T, Leung C-B, Szeto C-C. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med. 2003;139(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  117. Litwin M, Grenda R, Sladowska J, Antoniewicz J. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21(11):1716–22.

    Article  PubMed  Google Scholar 

  118. Frimodt-Moller M, Hoj Nielsen A, Strandgaard S, Kamper AL. Feasibility of combined treatment with enalapril and candesartan in advanced chronic kidney disease. Nephrol Dial Transplant. 2010;25(3):842–7.

    Article  CAS  PubMed  Google Scholar 

  119. Bianchi S, Bigazzi R, Campese VM. Intensive versus conventional therapy to slow the progression of idiopathic glomerular diseases. Am J Kidney Dis. 2010;55(4):671–81.

    Article  CAS  PubMed  Google Scholar 

  120. van Olden RW, van Meyel JJ, Gerlag PG. Acute and long-term effects of therapy with high-dose furosemide in chronic hemodialysis patients. Am J Nephrol. 1992;12(5):351–6.

    Article  PubMed  Google Scholar 

  121. Flinn A, Ledger S, Blake P. Effectiveness of furosemide in patients on peritoneal dialysis. CANNT Js. 2006;16(3):40–4.

    Google Scholar 

  122. Bragg-Gresham JL, Fissell RB, Mason NA, Bailie GR, Gillespie BW, Wizemann V, et al. Diuretic use, residual renal function, and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Pattern Study (DOPPS). Am J Kidney Dis. 2007;49(3):426–31.

    Article  PubMed  Google Scholar 

  123. Medcalf JF, Harris KP, Walls J. Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 2001;59(3):1128–33.

    Article  CAS  PubMed  Google Scholar 

  124. Haag-Weber M, Kramer R, Haake R, Islam MS, Prischl F, Haug U, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant. 2010;25(7):2288–96.

    Article  CAS  PubMed  Google Scholar 

  125. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004;66(1):408–18.

    Article  PubMed  Google Scholar 

  126. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2014;3:CD007554.

    Google Scholar 

  127. Wang J, Zhu N, Yuan W. Effect of neutral pH and low-glucose degradation product-containing peritoneal dialysis solution on residual renal function in peritoneal dialysis patients: a meta-analysis. Nephron. 2015;129(3):155–63.

    Article  CAS  PubMed  Google Scholar 

  128. Yohanna S, Alkatheeri AM, Brimble SK, McCormick B, Iansavitchous A, Blake PG, et al. Effect of neutral-pH, low-glucose degradation product peritoneal dialysis solutions on residual renal function, urine volume, and ultrafiltration: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2015;10(8):1380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sikaneta T, Wu G, Abdolell M, Ng A, Mahdavi S, Svendrovski A, et al. The trio trial – a randomized controlled clinical trial evaluating the effect of a biocompatible peritoneal dialysis solution on residual renal function. Perit Dial Int. 2016;36(5):526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  130. McCarthy JT, Jenson BM, Squillace DP, Williams AW. Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers. Am J Kidney Dis. 1997;29(4):576–83.

    Article  CAS  PubMed  Google Scholar 

  131. Hartmann J, Fricke H, Schiffl H. Biocompatible membranes preserve residual renal function in patients undergoing regular hemodialysis. Am J Kidney Dis. 1997;30(3):366–73.

    Article  CAS  PubMed  Google Scholar 

  132. Schindler R, Boenisch O, Fischer C, Frei U. Effect of the hemodialysis membrane on the inflammatory reaction in vivo. Clin Nephrol. 2000;53(6):452–9.

    CAS  PubMed  Google Scholar 

  133. Hakim RM, Wingard RL, Husni L, Parker RA, Parker TF 3rd. The effect of membrane biocompatibility on plasma beta 2-microglobulin levels in chronic hemodialysis patients. J Am Soc Nephrol. 1996;7(3):472–8.

    CAS  PubMed  Google Scholar 

  134. Schiffl H, Lang SM, Fischer R. Ultrapure dialysis fluid slows loss of residual renal function in new dialysis patients. Nephrol Dial Transplant. 2002;17(10):1814–8.

    Article  CAS  PubMed  Google Scholar 

  135. Ng TG, Johnson DW, Hawley CM. Is it time to revisit residual renal function in haemodialysis? Nephrology (Carlton). 2007;12(3):209–17.

    Article  Google Scholar 

  136. Chandna SM, Farrington K. Residual renal function: considerations on its importance and preservation in dialysis patients. Semin Dial. 2004;17(3):196–201.

    Article  PubMed  Google Scholar 

  137. Lu W, Ren C, Han X, Yang X, Cao Y, Huang B. The protective effect of different dialysis types on residual renal function in patients with maintenance hemodialysis: a systematic review and meta-analysis. Medicine. 2018;97(37):e12325.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ueda A, Nagai K, Hirayama A, Saito C, Yamagata K. Combination therapy with peritoneal dialysis and hemodialysis from the initiation of renal replacement therapy preserves residual renal function and serum albumin. Adv Perit Dial. 2017;33(2017):74–8.

    CAS  PubMed  Google Scholar 

  139. Wang X, Zhang X, Lu S, Liu D, Chen G, Dou Y, et al. Protective effect of mycophenolate mofetil on residual renal function in peritoneal dialysis patients: an open label feasibility study. Nephrology (Carlton). 2017;22(12):954–60.

    Article  CAS  Google Scholar 

  140. Ahmadi F, Abbaszadeh M, Razeghi E, Maziar S, Khoidaki SD, Najafi MT, et al. Effectiveness of N-acetylcysteine for preserving residual renal function in patients undergoing maintenance hemodialysis: multicenter randomized clinical trial. Clin Exp Nephrol. 2017;21(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  141. Feldman L, Shani M, Efrati S, Beberashvili I, Yakov-Hai I, Abramov E, et al. N-acetylcysteine improves residual renal function in peritoneal dialysis patients: a pilot study. Perit Dial Int. 2011;31(5):545–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Soo Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ha, IS., Schaefer, F. (2021). Preservation of Residual Renal Function in Children Reaching End-Stage Renal Disease. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics