Skip to main content

Enhancing Ant Colony Optimization by Adaptive Gradient Descent

  • Chapter
  • First Online:
Data Driven Smart Manufacturing Technologies and Applications

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 736 Accesses

Abstract

Ant Colony Optimization (ACO) is one of the widely used metaheuristic algorithms applicable to various optimization problems. The ACO design has been inspired by the foraging behavior of ant colonies. The performance of the algorithm, however, is not satisfactory since the update stage of pheromones in the algorithm is static and less intelligent, leading to early maturity and slow convergence. To improve the algorithm, in this research, a new ACO algorithm with an innovative adaptive gradient descent strategy (ADACO) is designed, and the algorithm is applied to the Travelling Salesman Problems (TSP) problem for validation. In the chapter, first, the ACO algorithm for TSP is modeled in the framework of stochastic gradient descent (SGD). A new loss function aiming at minimizing the expectation of error ratio and its gradient is defined. Then, an adaptive gradient descent strategy, which can exploit the update history of per-dimensional pheromones to achieve intelligent convergence, is integrated into the ACO algorithm as ADACO. A parallel computation process is also implemented in the algorithm. Finally, ADACO was trialed on various sizes of TSP instances and benchmarked with the Max–Min Ant System (MMAS) algorithm, the Ant Colony System (ACS) algorithm, and the Iterated Local Search (ILS) algorithm. Results show that ADACO outperformed those comparative algorithms in terms of accuracy, stability and adaptability. Furthermore, the results also elucidate that ADACO maintained high-performance computational efficiency owing to its parallel implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blum C, Li X (2008) Swarm intelligence in optimization. Swarm Intelligence: Introduction and Applications. Springer, Berlin Heidelberg, pp 43–85

    Chapter  Google Scholar 

  2. Slowik A, Kwasnicka H (2018) Nature inspired methods and their industry applications-swarm intelligence algorithms. IEEE Trans Industr Inf 14(3):1004–1015

    Article  Google Scholar 

  3. Dorigo M, Maniezzo V, Colorni A et al (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

    Article  Google Scholar 

  4. Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IEEE Trans Knowl Data Eng 11(5):769–778

    Article  Google Scholar 

  5. Bell JE, McMullen PR (2004) Ant colony optimization techniques for the vehicle routing problem. Adv Eng Inform 18(1):41–48

    Article  Google Scholar 

  6. Doerner K, Gutjahr WJ, Hartl RF, Strauss C, Stummer C (2004) Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Ann Oper Res 131(1–4):79–99

    Article  MathSciNet  Google Scholar 

  7. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173

    Article  MathSciNet  Google Scholar 

  8. Engin O, Guc¸l¨u A (2018) A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl Soft Comput 72:166–176

    Google Scholar 

  9. Dorigo M, Stutzle T (2019) Ant colony optimization: overview and recent advances. in Handbook of Metaheuristics. Springer, pp 311–351

    Google Scholar 

  10. Stutzle T, Dorigo M (2002) A short convergence proof for a class of ant colony optimization algorithms. IEEE Trans Evol Comput 6(4):358–365

    Article  Google Scholar 

  11. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  12. Stutzle T, Hoos HH (2000) Max–min ant system. Fut Gen Comput Syst 16(8):889–914

    Article  Google Scholar 

  13. Stutzle T, Lopez-Ib M, Pellegrini P, Maur M, De Oca MM, Birattari M, Dorigo M (2011) Parameter adaptation in ant colony optimization. in Autonomous Search. Springer, pp 191–215

    Google Scholar 

  14. Pellegrini P, Sttzle T, Birattari M (2011) A critical analysis of parameter adaptation in ant colony optimization. Swarm Intell 6(1):23–48

    Article  Google Scholar 

  15. LeCun Y, Bengio Y, Hinton G (2015) Deep learning XE “Deep learning” . Nature 521(7553):436–444

    Article  Google Scholar 

  16. Paszke A, Gross S, Massa F et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems 32, H., curran associates, Inc., pp 8026–8037. https://papers.nips.cc/paper/9015-pytorch-an-imperative-stylehigh-performance-deep-learning-library.pdf. Accessed 10 Oct 2020

  17. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe. in proceedings of the ACM International conference on multimedia - MM ’14. ACM Press, 2014

    Google Scholar 

  18. Ketkar N (2017) Introduction to keras. in Deep learning with python. Apress, pp 97–111

    Google Scholar 

  19. Kool W, van Hoof H, Welling M (2018) Attention, learn to solve routing problems. arXiv preprint arXiv:1803.08475

  20. Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. In: Advances in neural information processing systems 30, Curran associates, Inc., pp 6348–6358. https://papers.nips.cc/paper/7214-learningcombinatorial-optimization-algorithms-over-graphs.pdf. Accessed 10 Oct 2020

  21. Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128

  22. Klug N, Chauhan A, Ragala R (2019) k-RNN: Extending NNheuristics for the TSP XE “TSP” . Mob Netw Appl 24(4):1210–1213

    Article  Google Scholar 

  23. Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training. Neural Comput Appl 16(3):235–247

    Article  Google Scholar 

  24. Aljarah I, Faris H, Mirjalili S (2016) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Article  Google Scholar 

  25. Tian Z, Fong S (2016) Survey of meta-heuristic algorithms for deep learning training. In: Optimization algorithms - Methods and applications. InTech

    Google Scholar 

  26. Fong S, Deb S, Yang X (2017) How meta-heuristic algorithms contribute to deep learning in the hype of big data analytics. In: Advances in Intelligent systems and computing. Springer Singapore, pp 3–25

    Google Scholar 

  27. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

  28. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Lear Res 12(61):2121–2159. https://jmlr.org/papers/v12/duchi11a.html. Accessed 10 Oct 2020

  29. Tieleman T, Hinton G (2012) Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw Mach Learn 4(2):26–31

    Google Scholar 

  30. Zeiler MD (2012) ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701

  31. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, Physica-Verlag HD, pp 177–186

    Google Scholar 

  32. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384

    Google Scholar 

  33. Cecilia JM, Garc´ıa J.M., Nisbet A., Amos M., Ujaldon M. (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parall Distribut Comput 73(1):42–51

    Article  Google Scholar 

  34. Yang J, Zhuang Y (2010) An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Appl Soft Computing 10(2):653–660

    Article  Google Scholar 

  35. Elloumi W, Abed HE, Abraham A, Alimi AM (2014) A comparative study of the improvement of performance using a PSO XE “PSO” modified by ACO XE “ACO” applied to TSP XE “TSP” . Appl Soft Comput 25:234–241

    Article  Google Scholar 

  36. Olivas F, Valdez F, Castillo O, I Gonzalez C, Martinez G, Melin P (2017) Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl Soft Comput 53:74–87

    Google Scholar 

  37. Chen J, You X-M, Liu S, Li J (2019) Entropy-based dynamic heterogeneous ant colony optimization. IEEE Access 7:56317–56328

    Article  Google Scholar 

  38. Zhou Y, He F, Qiu Y (2017) Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Sci China Inform Sci 60(6)

    Google Scholar 

  39. Skinderowicz R (2016) The GPU-based parallel ant colony system. J Parall Distribut Comput 98:48–60

    Article  Google Scholar 

  40. Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Fut Gen Comput Syst 79:473–487

    Article  Google Scholar 

  41. Cvetkovic D, Cangalovi M, Kovacevi V (1999) Semidefinite programming methods for the symmetric traveling salesman problem. Integer Programming and Combinatorial Optimization XE “Optimization” . Springer, Berlin Heidelberg, pp 126–136

    Chapter  Google Scholar 

  42. Focacci F, Lodi A, Milano M (2002) Embedding relaxations in global constraints for solving tsp and tsptw. Annal Math Artif Intell 34(4):291–311

    Article  MathSciNet  Google Scholar 

  43. Xie X-F, Liu J (2009) Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Trans Syst, Man, Cybern, Part B (Cybern) 39(2):489–502

    Google Scholar 

  44. Shi J, Sun J, Zhang Q (2019) Homotopic convex transformation: A new method to smooth the landscape of the traveling salesman problem. arXiv preprint arXiv:1906.03223

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Li, W.D., Wang, X., Qiu, Q. (2021). Enhancing Ant Colony Optimization by Adaptive Gradient Descent. In: Li, W., Liang, Y., Wang, S. (eds) Data Driven Smart Manufacturing Technologies and Applications. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-66849-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66849-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66848-8

  • Online ISBN: 978-3-030-66849-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics