Skip to main content

Vascular Cognitive Impairment

  • Chapter
  • First Online:
Imaging Dementia

Abstract

Main imaging findings:

  • Large ischemic lesions:

    • MRI: hyperintensity on T2-weighted images, FLAIR and DWI and correspondent hypointensity on the ADC maps.

    • CT: No CT findings in early stages (only indirect signs). Hypodensity of the damaged tissue after 6–24 h from clinical onset.

  • White matter hyperintensities:

    • MRI: diffuse and hyperintense lesions on T2-weighted and FLAIR images mainly in periventricular regions and in the centrum semiovale. Normal or hypointense signal in T1-weighted images may be present.

    • CT: hypodense confluent alterations of the white matter.

  • Vascular lacunes:

    • MRI: round or ovoid cavities, filled with fluid and hyperintense on T2-weighted images, hyperintense peripheral rim in FLAIR sequences surrounding an hypointense core.

    • “État criblé”: multiple enlarged perivascular spaces in the basal ganglia.

    • CT: small ovoid hypodensities usually located in deep white matter.

    • Dimension: between 3 and 15 mm.

  • Perivascular spaces:

    • MRI: small, oval with a well-defined smooth margin hyperintensities, isointense to cerebrospinal fluid.

    • Dimension: not larger than 3 mm.

  • Cerebral microbleeds:

    • MRI: visible on conventional T2*-weighted GRE or SWI as intense hypointensities.

    • Main location: deep regions in hypertensive vasculopathy, lobar location in CAA.

  • Brain atrophy:

    • Cortical thinning and diminished brain volume.

    • Enlargement of the ventricles and subarachnoid spaces.

    • Both quantifiable on MRI and CT scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003.

    Article  PubMed  Google Scholar 

  2. Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond). 2017;131:1059–68.

    Article  Google Scholar 

  3. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357:169–75.

    Article  Google Scholar 

  4. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69:2197–204.

    Article  PubMed  Google Scholar 

  5. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.

    Article  CAS  PubMed  Google Scholar 

  6. Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131:659–85.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.

    Article  PubMed  Google Scholar 

  9. Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke. 1983;14:924–8.

    Article  CAS  PubMed  Google Scholar 

  10. Dichgans M, Mayer M, Uttner I, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44:731–9.

    Article  CAS  PubMed  Google Scholar 

  11. Loeb J, Feldt-Rasmussen U, Madsen CV, Vogel A. Cognitive impairments and subjective cognitive complaints in Fabry disease: a Nationwide study and review of the literature. JIMD Rep. 2018;41:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kozora E, Arciniegas DB, Filley CM, et al. Cognitive and neurologic status in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. Arthritis Rheum. 2008;59:1639–46.

    Article  PubMed  Google Scholar 

  13. Hajj-Ali RA, Saygin D, Ray E, et al. Long-term outcomes of patients with primary angiitis of the central nervous system. Clin Exp Rheumatol. 2019;37(Suppl 117):45–51.

    PubMed  Google Scholar 

  14. Sharp SI, Aarsland D, Day S, Sonnesyn H, Ballard C. Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatry. 2011;26:661–9.

    Article  PubMed  Google Scholar 

  15. Hebert R, Lindsay J, Verreault R, et al. Vascular dementia: incidence and risk factors in the Canadian study of health and aging. Stroke. 2000;31:1487–93.

    Article  CAS  PubMed  Google Scholar 

  16. Hassing LB, Johansson B, Nilsson SE, et al. Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer’s disease: a population-based study of the oldest old. Int Psychogeriatr. 2002;14:239–48.

    Article  PubMed  Google Scholar 

  17. Reitz C, Tang MX, Luchsinger J, Mayeux R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol. 2004;61:705–14.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lackland DT, Roccella EJ, Deutsch AF, et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014;45:315–53.

    Article  PubMed  Google Scholar 

  19. Murray AD, Staff RT, McNeil CJ, et al. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s diseases. Brain. 2011;134:3687–96.

    Article  PubMed  Google Scholar 

  20. Sachdev PS, Brodaty H, Valenzuela MJ, et al. The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology. 2004;62:912–9.

    Article  CAS  PubMed  Google Scholar 

  21. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8:1006–18.

    Article  PubMed  Google Scholar 

  22. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol. 2000;47:145–51.

    Article  PubMed  Google Scholar 

  24. Case NF, Charlton A, Zwiers A, et al. Cerebral amyloid angiopathy is associated with executive dysfunction and mild cognitive impairment. Stroke. 2016;47:2010–6.

    Article  PubMed  Google Scholar 

  25. Amberla K, Waljas M, Tuominen S, et al. Insidious cognitive decline in CADASIL. Stroke. 2004;35:1598–602.

    Article  PubMed  Google Scholar 

  26. Thanvi B, Lo N, Robinson T. Vascular parkinsonism—an important cause of parkinsonism in older people. Age Ageing. 2005;34:114–9.

    Article  PubMed  Google Scholar 

  27. Fuh JL, Wang SJ, Cummings JL. Neuropsychiatric profiles in patients with Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry. 2005;76:1337–41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12:371–84.

    Article  CAS  PubMed  Google Scholar 

  29. Byram K, Hajj-Ali RA, Calabrese L. CNS vasculitis: an approach to differential diagnosis and management. Curr Rheumatol Rep. 2018;20:37.

    Article  PubMed  CAS  Google Scholar 

  30. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Association AP. Diagnostic and statistical manual of mental disorders. BMC Med. 2013;17:133–7.

    Google Scholar 

  32. Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016;15:934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brainin M, Tuomilehto J, Heiss WD, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22:229–38, e213–26.

    Article  CAS  PubMed  Google Scholar 

  34. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Straaten EC, Scheltens P, Barkhof F. MRI and CT in the diagnosis of vascular dementia. J Neurol Sci. 2004;226:9–12.

    Article  PubMed  Google Scholar 

  36. Wardlaw JM, Brindle W, Casado AM, et al. A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research. Eur Radiol. 2012;22:2295–303.

    Article  PubMed  Google Scholar 

  37. Biesbroek JM, Weaver NA, Biessels GJ. Lesion location and cognitive impact of cerebral small vessel disease. Clin Sci (Lond). 2017;131:715–28.

    Article  Google Scholar 

  38. Allen LM, Hasso AN, Handwerker J, Farid H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics. 2012;32:1285–97; discussion 1297–9.

    Article  PubMed  Google Scholar 

  39. Srinivasan A, Goyal M, Al Azri F, Lum C. State-of-the-art imaging of acute stroke. Radiographics. 2006;26(Suppl 1):S75–95.

    Article  PubMed  Google Scholar 

  40. Levine DA, Galecki AT, Langa KM, et al. Trajectory of cognitive decline after incident stroke. JAMA. 2015;314:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hachinski V, Iadecola C, Petersen RC, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37:2220–41.

    Article  PubMed  Google Scholar 

  42. Boon A, Lodder J, Heuts-van Raak L, Kessels F. Silent brain infarcts in 755 consecutive patients with a first-ever supratentorial ischemic stroke. Relationship with index-stroke subtype, vascular risk factors, and mortality. Stroke. 1994;25:2384–90.

    Article  CAS  PubMed  Google Scholar 

  43. Fanning JP, Wong AA, Fraser JF. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med. 2014;12:119.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wright CB, Festa JR, Paik MC, et al. White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke. 2008;39:800–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liebetrau M, Steen B, Hamann GF, Skoog I. Silent and symptomatic infarcts on cranial computerized tomography in relation to dementia and mortality: a population-based study in 85-year-old subjects. Stroke. 2004;35:1816–20.

    Article  PubMed  Google Scholar 

  46. Zhao L, Biesbroek JM, Shi L, et al. Strategic infarct location for post-stroke cognitive impairment: a multivariate lesion-symptom mapping study. J Cereb Blood Flow Metab. 2018;38:1299–311.

    Article  PubMed  Google Scholar 

  47. Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol. 1987;44:21–3.

    Article  CAS  PubMed  Google Scholar 

  48. de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brickman AM, Schupf N, Manly JJ, et al. Brain morphology in older African Americans, Caribbean Hispanics, and whites from northern Manhattan. Arch Neurol. 2008;65:1053–61.

    PubMed  PubMed Central  Google Scholar 

  50. Morris Z, Whiteley WN, Longstreth WT, et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2009;339:b3016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chowdhury MH, Nagai A, Bokura H, et al. Age-related changes in white matter lesions, hippocampal atrophy, and cerebral microbleeds in healthy subjects without major cerebrovascular risk factors. J Stroke Cerebrovasc Dis. 2011;20:302–9.

    Article  PubMed  Google Scholar 

  52. Tomimoto H. Subcortical vascular dementia. Neurosci Res. 2011;71:193–9.

    Article  PubMed  Google Scholar 

  53. Kanekar S, Poot JD. Neuroimaging of vascular dementia. Radiol Clin N Am. 2014;52:383–401.

    Article  PubMed  Google Scholar 

  54. Charil A, Yousry TA, Rovaris M, et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol. 2006;5:841–52.

    Article  PubMed  Google Scholar 

  55. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–6.

    Article  CAS  PubMed  Google Scholar 

  56. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683.

    Article  CAS  PubMed  Google Scholar 

  57. Haller S, Kovari E, Herrmann FR, et al. Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathol Commun. 2013;1:14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Debette S, Bombois S, Bruandet A, et al. Subcortical hyperintensities are associated with cognitive decline in patients with mild cognitive impairment. Stroke. 2007;38:2924–30.

    Article  PubMed  Google Scholar 

  59. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry. 2000;57:1071–6.

    Article  PubMed  Google Scholar 

  60. Yousry TA, Seelos K, Mayer M, et al. Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). AJNR Am J Neuroradiol. 1999;20:91–100.

    CAS  PubMed  Google Scholar 

  61. Scheltens P, Barkhof F, Leys D, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114:7–12.

    Article  CAS  PubMed  Google Scholar 

  62. Inzitari D, Simoni M, Pracucci G, et al. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. Arch Intern Med. 2007;167:81–8.

    Article  PubMed  Google Scholar 

  63. Inzitari D, Pracucci G, Poggesi A, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009;339:b2477.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Godin O, Tzourio C, Rouaud O, et al. Joint effect of white matter lesions and hippocampal volumes on severity of cognitive decline: the 3C-Dijon MRI study. J Alzheimers Dis. 2010;20:453–63.

    Article  PubMed  Google Scholar 

  65. Vemuri P, Lesnick TG, Przybelski SA, et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain. 2015;138:761–71.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lampe L, Kharabian-Masouleh S, Kynast J, et al. Lesion location matters: the relationships between white matter hyperintensities on cognition in the healthy elderly. J Cereb Blood Flow Metab. 2017;39:36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Knopman DS, Griswold ME, Lirette ST, et al. Vascular imaging abnormalities and cognition. Stroke. 2015;46:433–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Au R, Massaro JM, Wolf PA, et al. Association of white matter hyperintensity volume with decreased cognitive functioning. Arch Neurol. 2006;63:246.

    Article  PubMed  Google Scholar 

  69. Camarda C, Torelli P, Pipia C, et al. Association between atrophy of the caudate nuclei, global brain atrophy, cerebral small vessel disease and mild parkinsonian signs in neurologically and cognitively healthy subjects aged 45-84 years: a crosssectional study. Curr Alzheimer Res. 2018;15:1013–26.

    Article  CAS  PubMed  Google Scholar 

  70. Willey Joshua Z, Moon Yeseon P, Dhamoon Mandip S, et al. Regional subclinical cerebrovascular disease is associated with balance in an elderly multi-ethnic population. Neuroepidemiology. 2018;51:57–63.

    Article  CAS  PubMed  Google Scholar 

  71. Boone KB, Miller BL, Lesser IM, et al. Neuropsychological correlates of white-matter lesions in healthy elderly subjects. A threshold effect. Arch Neurol. 1992;49:549–54.

    Article  CAS  PubMed  Google Scholar 

  72. van Straaten EC, Scheltens P, Knol DL, et al. Operational definitions for the NINDS-AIREN criteria for vascular dementia: an interobserver study. Stroke. 2003;34:1907–12.

    Article  PubMed  Google Scholar 

  73. Marks P. Cerebral ischemia and infarction. In: Magnetic resonance imaging of the brain and spine, vol. 1. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. p. 919–79.

    Google Scholar 

  74. Wright CB, Dong C, Perez EJ, et al. Subclinical cerebrovascular disease increases the risk of incident stroke and mortality: the northern Manhattan study. J Am Heart Assoc. 2017;6:e004069.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of cerebral small vessel disease and age-related cognitive changes. Front Aging Neurosci. 2019;11:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Knopman DS, Penman AD, Catellier DJ, et al. Vascular risk factors and longitudinal changes on brain MRI: the ARIC study. Neurology. 2011;76:1879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Viswanathan A, Godin O, Jouvent E, et al. Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging. 2010;31:1629–36.

    Article  PubMed  Google Scholar 

  78. Koga H, Takashima Y, Murakawa R, et al. Cognitive consequences of multiple lacunes and Leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J Stroke Cerebrovasc Dis. 2009;18:32–7.

    Article  PubMed  Google Scholar 

  79. Vermeer SE, Prins ND, den Heijer T, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348:1215–22.

    Article  PubMed  Google Scholar 

  80. Vital C, Julien J. Expanding lacunae causing triventricular hydrocephalus. J Neurosurg. 2000;93:155–6.

    Article  CAS  PubMed  Google Scholar 

  81. De Guio F, Jouvent E, Biessels GJ, et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab. 2016;36:1319–37.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ramirez J, Berezuk C, McNeely AA, et al. Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:289–99.

    Article  CAS  PubMed  Google Scholar 

  83. Adams HHH, Hilal S, Schwingenschuh P, et al. A priori collaboration in population imaging: the uniform neuro-imaging of Virchow-Robin spaces enlargement consortium. Alzheimer’s Dement Diagn Assess Dis Monit. 2015;1:513–20.

    Google Scholar 

  84. Gutierrez J, Elkind MSV, Cheung K, et al. Pulsatile and steady components of blood pressure and subclinical cerebrovascular disease. J Hypertens. 2015;33:2115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yao M, Zhu Y-C, Soumaré A, et al. Hippocampal perivascular spaces are related to aging and blood pressure but not to cognition. Neurobiol Aging. 2014;35:2118–25.

    Article  PubMed  Google Scholar 

  86. Yakushiji Y, Charidimou A, Hara M, et al. Topography and associations of perivascular spaces in healthy adults: the Kashima scan study. Neurology. 2014;83:2116–23.

    Article  PubMed  Google Scholar 

  87. MacLullich AMJ. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry. 2004;75:1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ding J, Sigurðsson S, Jónsson PV, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia. JAMA Neurol. 2017;74:1105.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Adachi M, Hosoya T, Haku T, Yamaguchi K. Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology. 1998;40:27–31.

    Article  CAS  PubMed  Google Scholar 

  90. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Roob G, Schmidt R, Kapeller P, et al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999;52:991.

    Article  CAS  PubMed  Google Scholar 

  92. Ding J, Sigurðsson S, Jónsson PV, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology. 2017;88:2089–97.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Graff-Radford J, Simino J, Kantarci K, et al. Neuroimaging correlates of cerebral microbleeds. Stroke. 2017;48:2964–72.

    Article  PubMed  PubMed Central  Google Scholar 

  94. van Leijsen EMC, van Uden IWM, Ghafoorian M, et al. Nonlinear temporal dynamics of cerebral small vessel disease. Neurology. 2017;89:1569–77.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol. 2009;30:232–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Scheid R, Ott DV, Roth H, Schroeter ML, von Cramon DY. Comparative magnetic resonance imaging at 1.5 and 3 tesla for the evaluation of traumatic microbleeds. J Neurotrauma. 2007;24:1811–6.

    Article  PubMed  Google Scholar 

  97. Stehling C, Wersching H, Kloska SP, et al. Detection of asymptomatic cerebral microbleeds. Acad Radiol. 2008;15:895–900.

    Article  PubMed  Google Scholar 

  98. Barnaure I, Montandon ML, Rodriguez C, et al. Clinicoradiologic correlations of cerebral microbleeds in advanced age. AJNR Am J Neuroradiol. 2017;38:39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Romero JR, Preis SR, Beiser A, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham heart study. Stroke. 2014;45:1492–4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41:S103–6.

    Article  PubMed  Google Scholar 

  101. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam scan study. Neurology. 2008;70:1208–14.

    Article  CAS  PubMed  Google Scholar 

  102. Loehrer E, Ikram M, Akoudad S, et al. Apolipoprotein E-ɛ4 genotype influences spatial distribution of cerebral microbleeds. Alzheimers Dement. 2013;9:P705.

    Article  Google Scholar 

  103. Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain. 2015;138:1696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Poels MMF, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam scan study. Neurology. 2012;78:326–33.

    Article  CAS  PubMed  Google Scholar 

  105. Haller S, Vernooij MW, Kuijer JPA, et al. Cerebral microbleeds: imaging and clinical significance. Radiology. 2018;287:11–28.

    Article  PubMed  Google Scholar 

  106. Bobinski M, De Leon M, Wegiel J, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 1999;95:721–5.

    Article  Google Scholar 

  107. Appelman AP, Exalto LG, Van Der Graaf Y, et al. White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc Dis. 2009;28:227–42.

    Article  PubMed  Google Scholar 

  108. Aribisala BS, Hernández MCV, Royle NA, et al. Brain atrophy associations with white matter lesions in the ageing brain: the Lothian birth cohort 1936. Eur Radiol. 2013;23:1084–92.

    Article  PubMed  Google Scholar 

  109. Gurol ME, Becker JA, Fotiadis P, et al. Florbetapir-PET to diagnose cerebral amyloid angiopathy: a prospective study. Neurology. 2016;87:2043–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heiss WD, Zimmermann-Meinzingen S. PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci. 2012;322:268–73.

    Article  PubMed  Google Scholar 

  111. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  112. Villemagne VL, Ong K, Mulligan RS, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.

    Article  PubMed  Google Scholar 

  113. Cho ME, Kopp JB. Fabry disease in the era of enzyme replacement therapy: a renal perspective. Pediatr Nephrol. 2004;19:583–93.

    Article  PubMed  Google Scholar 

  114. Thiel A, Heiss WD. Imaging of microglia activation in stroke. Stroke. 2011;42:507–12.

    Article  PubMed  Google Scholar 

  115. Radlinska BA, Blunk Y, Leppert IR, et al. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab. 2012;32:1515–24.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Thiel A, Cechetto DF, Heiss WD, Hachinski V, Whitehead SN. Amyloid burden, neuroinflammation, and links to cognitive decline after ischemic stroke. Stroke. 2014;45:2825–9.

    Article  PubMed  Google Scholar 

  117. Maillard P, Fletcher E, Lockhart SN, et al. White matter Hyperintensities and their penumbra lie along a continuum of injury in the aging brain. Stroke. 2014;45:1721–6.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Seiler S, Fletcher E, Hassan-Ali K, et al. Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition. Neurobiol Aging. 2018;72:14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cannistraro RJ, Badi M, Eidelman BH, et al. CNS small vessel disease: a clinical review. Neurology. 2019;92:1146–56.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mascalchi M, Salvadori E, Toschi N, et al. DTI-derived indexes of brain WM correlate with cognitive performance in vascular MCI and small-vessel disease. A TBSS study. Brain Imaging Behav. 2019;13:594–602.

    Article  PubMed  Google Scholar 

  121. Baykara E, Gesierich B, Adam R, et al. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann Neurol. 2016;80:581–92.

    Article  PubMed  Google Scholar 

  122. Kim HJ, Im K, Kwon H, et al. Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology. 2015;85:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tuladhar AM, van Dijk E, Zwiers MP, et al. Structural network connectivity and cognition in cerebral small vessel disease. Hum Brain Mapp. 2016;37:300–10.

    Article  PubMed  Google Scholar 

  124. Tuladhar AM, van Uden IW, Rutten-Jacobs LC, et al. Structural network efficiency predicts conversion to dementia. Neurology. 2016;86:1112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ding JR, Ding X, Hua B, et al. Abnormal functional connectivity density in patients with ischemic white matter lesions: an observational study. Medicine (Baltimore). 2016;95:e4625.

    Article  Google Scholar 

  126. Ding X, Ding J, Hua B, et al. Abnormal cortical functional activity in patients with ischemic white matter lesions: a resting-state functional magnetic resonance imaging study. Neurosci Lett. 2017;644:10–7.

    Article  CAS  PubMed  Google Scholar 

  127. Chen Y, Wang C, Liang H, et al. Resting-state functional magnetic resonance imaging in patients with leukoaraiosis-associated subcortical vascular cognitive impairment: a cross-sectional study. Neurol Res. 2016;38:510–7.

    Article  PubMed  Google Scholar 

  128. Acharya A, Liang X, Tian W, et al. White matter hyperintensities relate to basal ganglia functional connectivity and memory performance in aMCI and SVMCI. Front Neurosci. 2019;13:1204.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Langen CD, Zonneveld HI, White T, et al. White matter lesions relate to tract-specific reductions in functional connectivity. Neurobiol Aging. 2017;51:97–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, M., Agosta, F. (2021). Vascular Cognitive Impairment. In: Imaging Dementia. Springer, Cham. https://doi.org/10.1007/978-3-030-66773-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66773-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66772-6

  • Online ISBN: 978-3-030-66773-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics