Skip to main content

A Mathematical Approach to Improve Energy-Water Nexus Reliability Using a Novel Multi-stage Adjustable Fuzzy Robust Approach

  • Conference paper
  • First Online:
Progress in Intelligent Decision Science (IDS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1301))

Included in the following conference series:

Abstract

A system of a systems approach that analyzes energy and water systems simultaneously is called energy-water nexus. Neglecting the interrelationship between energy and water drives vulnerabilities whereby limits on one resource can cause constraints on the other resource. Power plant energy production directly depends on water availability, and an outage of the power systems will affect the wastewater treatment facility processes. Therefore, it is essential to integrate energy and water planning models. As mathematical energy-water nexus problems are complex, involve many uncertain parameters, and are large-scale, we proposed a novel multi-stage adjustable Fuzzy robust approach that balances the solutions’ robustness against the budget-constraints. Scenario-based analysis indicates that the proposed approach generates flexible and robust decisions that avoid excessive costs compared to conservative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrillo, A.M.R., Frei, C.: Water: a key resource in energy production. Energy Policy 37(11), 4303–4312 (2009)

    Article  Google Scholar 

  2. Mackres, E.: Addressing the energy-water nexus: a blueprint for action and policy agenda. Proc. Water Environ. Fed. 2011(6), 1242–1244 (2011)

    Article  Google Scholar 

  3. Park, L., Croyle, K.: California’s water-energy nexus: pathways to implementation. GEI Consultants, Inc. (2012)

    Google Scholar 

  4. Tarroja, B., AghaKouchak, A., Sobhani, R., Feldman, D., Jiang, S., Samuelsen, S.: Evaluating options for balancing the water-electricity nexus in California: part 1 - securing water availability. Sci. Total Environ. 497, 697–710 (2014)

    Article  Google Scholar 

  5. Wolff, R.B.: Energy down the drain, the hidden costs of California’s water supply. Technical report, Natural Resources Defense Council (2004)

    Google Scholar 

  6. Wakeel, M., Chen, B., Hayat, T., Alsaedi, A., Ahmad, B.: Energy consumption for water use cycles in different countries: a review. Appl. Energy 178, 868–885 (2016). http://linkinghub.elsevier.com/retrieve/pii/S0306261916308893

  7. DOE: Energy demands on water resources (report to Congress on the interdependency of energy and water). Technical report, U.S. Department of Energy (2006)

    Google Scholar 

  8. Mielke, E., Diaz Anadon, L., Narayanamurti, V.: Water consumption of energy resource extraction, processing, and conversion. Energy Technology Innovation Policy Research Group, October 2010. http://belfercenter.ksg.harvard.edu/files/ETIP-DP-2010-15-final-4.pdf

  9. Stillwell, A.S., King, C.W., Webber, M.E., Duncan, I.J., Hardberger, A.: The energy-water nexus in Texas. Ecol. Soc. 16(1), p. 2 (2011). http://www.ecologyandsociety.org/vol16/iss1/art2/

  10. Yang, J., Chen, B.: Energy-water nexus of wind power generation systems. Appl. Energy 169, 1–13 (2016)

    Article  Google Scholar 

  11. DeNooyer, T.A., Peschel, J.M., Zhang, Z., Stillwell, A.S.: Integrating water resources and power generation: the energy-water nexus in Illinois. Appl. Energy 162, 363–371 (2016)

    Article  Google Scholar 

  12. Sanders, K.T., Webber, M.E.: Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States. Energy 81, 317 – 327 (2015). http://www.sciencedirect.com/science/article/pii/S0360544214014170

  13. Santhosh, A., Farid, A.M., Youcef-Toumi, K.: Real-time economic dispatch for the supply side of the energy-water nexus. Appl. Energy 122, 42–52 (2014)

    Article  Google Scholar 

  14. Chen, S., Chen, B.: Urban energy-water nexus: a network perspective. Appl. Energy 184, 905–914 (2016)

    Article  Google Scholar 

  15. Wang, S., Liu, Y., Chen, B.: Multiregional input–output and ecological network analyses for regional energy–water nexus within China. Appl. Energy 227, 353 – 364 (2018). http://www.sciencedirect.com/science/article/pii/S030626191731694X, Transformative Innovations for a Sustainable Future – Part III

  16. Esmaeili, M., Bahrini, A., Shayanrad, S.: Using game theory approach to interpret stable policies for Iran’s oil and gas common resources conflicts with Iraq and Qatar. J. Ind. Eng. Int. 11, 543–554 (2015)

    Article  Google Scholar 

  17. Mohamadi, M., Bahrini, A.: A nash-stackelberg equilibrium model for internet and network service providers in the demand market-a scenario-based approach. Wireless Netw. 26(1), 449–461 (2020)

    Article  Google Scholar 

  18. Hassanzadeh, E., Elshorbagy, A., Wheater, H., Gober, P., Nazemi, A.: Integrating supply uncertainties from stochastic modeling into integrated water resource management: Case study of the Saskatchewan River basin. J. Water Resour. Plann. Manage. 142(2), 5015006, August 2015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000581

  19. Arandia, E., Ba, A., Eck, B., McKenna, S.: Tailoring seasonal time series models to forecast short-term water demand. J. Water Resour. Plann. Manage. 142(3), 4015067, December 2015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000591

  20. Ju, L., Tan, Z., Yuan, J., Tan, Q., Li, H., Dong, F.: A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response. Appl. Energy 171, 184–199 (2016). http://www.sciencedirect.com/science/article/pii/S0306261916303312

  21. Ghassemi, A., Hu, M., Zhou, Z.: Robust planning decision model for an integrated water system. J. Water Resou. Plann. Manage. 143, 1–12 (2017)

    Google Scholar 

  22. Babayan, A., Kapelan, Z., Savic, D., Walters, G.: Least-cost design of water distribution networks under demand uncertainty. J. Water Resour. Plann. Manage. 131(5), 375–382 (2005)

    Article  Google Scholar 

  23. Weini, Z.: Water network design and management via stochastic programming. Ph.D. thesis, University of Arizona (2013)

    Google Scholar 

  24. Parisio, A., Rikos, E., Tzamalis, G., Glielmo, L.: Use of model predictive control for experimental microgrid optimization. Appl. Energy 115, 37 – 46 (2014). http://www.sciencedirect.com/science/article/pii/S0306261913008477

  25. Coelho, V.N., Coelho, I.M., Coelho, B.N., Reis, A.J., Enayatifar, R., Souza, M.J., Guimarães, F.G.: A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Appl. Energy 169, 567 – 584 (2016). http://www.sciencedirect.com/science/article/pii/S0306261916301684

  26. Suganthi, L., Iniyan, S., Samuel, A.A.: Applications of fuzzy logic in renewable energy systems – a review. Renew. Sustain. Energy Rev. 48, 585 – 607 (2015). http://www.sciencedirect.com/science/article/pii/S136403211500307X

  27. Ghassemi, A.: System of Systems Approach to Develop an Energy-Water Nexus Model Under Uncertainty. Ph.D. thesis (2019)

    Google Scholar 

  28. Peykani, P., Mohammadi, E., Pishvaee, M., Rostamy-Malkhalifeh, M., Jabbarzadeh, A.: A novel fuzzy data envelopment analysis based on robust possibilistic programming: Possibility, necessity and credibility-based approaches. RAIRO - Oper. Res. 52, 1445 – 1463 (12 2018)

    Google Scholar 

  29. Peykani, P., Mohammadi, E., Emrouznejad, A., Pishvaee, M.S., Rostamy-Malkhalifeh, M.: Fuzzy data envelopment analysis: an adjustable approach. Expert Syst. Appl. 136, 439 – 452 (2019). http://www.sciencedirect.com/science/article/pii/S0957417419304397

  30. Zadeh, L.A.: A note on z-numbers. Inf. Sci. 181(14), 2923–2932 (2011). http://www.sciencedirect.com/science/article/pii/S0020025511001046

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ghassemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghassemi, A., Scott, M.J. (2021). A Mathematical Approach to Improve Energy-Water Nexus Reliability Using a Novel Multi-stage Adjustable Fuzzy Robust Approach. In: Allahviranloo, T., Salahshour, S., Arica, N. (eds) Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems and Computing, vol 1301. Springer, Cham. https://doi.org/10.1007/978-3-030-66501-2_9

Download citation

Publish with us

Policies and ethics